Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 217

Publication Record

Connections

Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin.
Perry NA, Zhan X, Gurevich EV, Iverson TM, Gurevich VV
(2019) Methods Mol Biol 1957: 107-120
MeSH Terms: Animals, Arrestin, Biological Assay, COS Cells, Chlorocebus aethiops, HEK293 Cells, Humans, Immobilized Proteins, Mice, Protein Binding, Protein Interaction Mapping, Recombinant Fusion Proteins
Show Abstract · Added April 1, 2019
Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.
0 Communities
2 Members
0 Resources
12 MeSH Terms
The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis.
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ
(2019) Cell Rep 26: 2540-2548.e4
MeSH Terms: Animals, COS Cells, Cell Cycle Proteins, Cell Membrane, Chlorocebus aethiops, Cytokinesis, GTPase-Activating Proteins, Microscopy, Confocal, Protein Domains, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Transfection
Show Abstract · Added April 10, 2019
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Chlorocebus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Structural Model of Ghrelin Bound to its G Protein-Coupled Receptor.
Bender BJ, Vortmeier G, Ernicke S, Bosse M, Kaiser A, Els-Heindl S, Krug U, Beck-Sickinger A, Meiler J, Huster D
(2019) Structure 27: 537-544.e4
MeSH Terms: Animals, Binding Sites, COS Cells, Chlorocebus aethiops, Ghrelin, HEK293 Cells, Humans, Magnetic Resonance Spectroscopy, Models, Molecular, Mutagenesis, Site-Directed, Protein Binding, Protein Conformation, Receptors, Ghrelin
Show Abstract · Added March 21, 2020
The peptide ghrelin targets the growth hormone secretagogue receptor 1a (GHSR) to signal changes in cell metabolism and is a sought-after therapeutic target, although no structure is known to date. To investigate the structural basis of ghrelin binding to GHSR, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, site-directed mutagenesis, and Rosetta modeling. The use of saturation transfer difference NMR identified key residues in the peptide for receptor binding beyond the known motif. This information combined with assignment of the secondary structure of ghrelin in its receptor-bound state was incorporated into Rosetta using an approach that accounts for flexible binding partners. The NMR data and models revealed an extended binding surface that was confirmed via mutagenesis. Our results agree with a growing evidence of peptides interacting via two sites at G protein-coupled receptors.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Cleavage of arrestin-3 by caspases attenuates cell death by precluding arrestin-dependent JNK activation.
Kook S, Vishnivetskiy SA, Gurevich VV, Gurevich EV
(2019) Cell Signal 54: 161-169
MeSH Terms: Animals, Apoptosis, Arrestins, COS Cells, Caspases, Chlorocebus aethiops, Etoposide, MAP Kinase Kinase 4, MAP Kinase Kinase Kinase 5
Show Abstract · Added March 18, 2020
The two non-visual subtypes, arrestin-2 and arrestin-3, are ubiquitously expressed and bind hundreds of G protein-coupled receptors. In addition, these arrestins also interact with dozens of non-receptor signaling proteins, including c-Src, ERK and JNK, that regulate cell death and survival. Arrestin-3 facilitates the activation of JNK family kinases, which are important players in the regulation of apoptosis. Here we show that arrestin-3 is specifically cleaved at Asp366, Asp405 and Asp406 by caspases during the apoptotic cell death. This results in the generation of one main cleavage product, arrestin-3-(1-366). The formation of this fragment occurs in a dose-dependent manner with the increase of fraction of apoptotic cells upon etoposide treatment. In contrast to a caspase-resistant mutant (D366/405/406E) the arrestin-3-(1-366) fragment reduces the apoptosis of etoposide-treated cells. We found that caspase cleavage did not affect the binding of the arrestin-3 to JNK3, but prevented facilitation of its activation, in contrast to the caspase-resistant mutant, which facilitated JNK activation similar to WT arrestin-3, likely due to decreased binding of the upstream kinases ASK1 and MKK4/7. The data suggest that caspase-generated arrestin-3-(1-366) prevents the signaling in the ASK1-MKK4/7-JNK1/2/3 cascade and protects cells, thereby suppressing apoptosis.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G
(2018) J Biol Chem 293: 876-892
MeSH Terms: Angiotensin II, Animals, COS Cells, Chlorocebus aethiops, HEK293 Cells, Humans, Immunoblotting, Microscopy, Confocal, Mitogen-Activated Protein Kinases, Phosphorylation, Receptors, G-Protein-Coupled, beta-Arrestins
Show Abstract · Added March 14, 2018
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, G-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT angiotensin receptor (ATR). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated ATR in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Identification and Characterization of the First Selective Y Receptor Positive Allosteric Modulator.
Schubert M, Stichel J, Du Y, Tough IR, Sliwoski G, Meiler J, Cox HM, Weaver CD, Beck-Sickinger AG
(2017) J Med Chem 60: 7605-7612
MeSH Terms: Allosteric Regulation, Animals, Arrestins, COS Cells, Chlorocebus aethiops, Cyclohexanols, GTP-Binding Proteins, HEK293 Cells, Humans, Models, Molecular, Receptors, Neuropeptide Y, Signal Transduction
Show Abstract · Added March 17, 2018
The human Y receptor (YR) and its cognate ligand, pancreatic polypeptide (PP), are involved in the regulation of energy expenditure, satiety, and food intake. This system represents a potential target for the treatment of metabolic diseases and has been extensively investigated and validated in vivo. Here, we present the compound tBPC (tert-butylphenoxycyclohexanol), a novel and selective YR positive allosteric modulator that potentiates YR activation in G-protein signaling and arrestin3 recruitment experiments. The compound has no effect on the binding of the orthosteric ligands, implying its allosteric mode of action at the YR and evidence for a purely efficacy-driven positive allosteric modulation. Finally, the ability of tBPC to selectively potentiate YR agonism initiated by PP was confirmed in mouse descending colon mucosa preparations expressing native YR, demonstrating YR positive allosteric modulation in vitro.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Hepatic β-arrestin 2 is essential for maintaining euglycemia.
Zhu L, Rossi M, Cui Y, Lee RJ, Sakamoto W, Perry NA, Urs NM, Caron MG, Gurevich VV, Godlewski G, Kunos G, Chen M, Chen W, Wess J
(2017) J Clin Invest 127: 2941-2945
MeSH Terms: Animals, Blood Glucose, COS Cells, Chlorocebus aethiops, Diabetes Mellitus, Type 2, Diet, High-Fat, Gene Deletion, Gene Expression Regulation, Glucagon, Hepatocytes, Homeostasis, Insulin, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Phenotype, Receptors, Glucagon, Signal Transduction, beta-Arrestin 1, beta-Arrestin 2
Show Abstract · Added March 14, 2018
An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV
(2017) Cell Signal 36: 98-107
MeSH Terms: Amino Acid Sequence, Animals, Arrestins, COS Cells, Cattle, Chlorocebus aethiops, Conserved Sequence, HEK293 Cells, Humans, Lysine, Mutant Proteins, Mutation, Protein Binding, Protein Structure, Secondary, Receptors, G-Protein-Coupled, Rhodopsin
Show Abstract · Added March 14, 2018
Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M muscarinic receptor, so that agonist activation of the M did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M, whereas its interactions with other receptors, including the β-adrenergic receptor and the D and D dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β-adrenergic and D dopamine receptors, while reducing its interaction with the D dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
16 MeSH Terms
A Deep Hydrophobic Binding Cavity is the Main Interaction for Different Y R Antagonists.
Burkert K, Zellmann T, Meier R, Kaiser A, Stichel J, Meiler J, Mittapalli GK, Roberts E, Beck-Sickinger AG
(2017) ChemMedChem 12: 75-85
MeSH Terms: Animals, Arginine, Benzazepines, Binding Sites, COS Cells, Cells, Cultured, Chlorocebus aethiops, Dose-Response Relationship, Drug, HEK293 Cells, Humans, Hydrophobic and Hydrophilic Interactions, Molecular Docking Simulation, Molecular Structure, Receptors, Neuropeptide Y, Structure-Activity Relationship
Show Abstract · Added April 8, 2017
The neuropeptide Y receptor (Y R) is involved in various pathophysiological processes such as epilepsy, mood disorders, angiogenesis, and tumor growth. Therefore, the Y R is an interesting target for drug development. A detailed understanding of the binding pocket could facilitate the development of highly selective antagonists to study the role of Y R in vitro and in vivo. In this study, several residues crucial to the interaction of BIIE0246 and SF-11 derivatives with Y R were investigated by signal transduction assays. Using the experimental results as constraints, the antagonists were docked into a comparative structural model of the Y R. Despite differences in size and structure, all three antagonists display a similar binding site, including a deep hydrophobic cavity formed by transmembrane helices (TM) 4, 5, and 6, as well as a hydrophobic patch at the top of TM2 and 7. Additionally, we suggest that the antagonists block Q , a position that has been shown to be crucial for binding of the amidated C terminus of NPY and thus for receptor activation.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
1 Members
0 Resources
15 MeSH Terms