Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 15

Publication Record


Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling.
Samovski D, Dhule P, Pietka T, Jacome-Sosa M, Penrose E, Son NH, Flynn CR, Shoghi KI, Hyrc KL, Goldberg IJ, Gamazon ER, Abumrad NA
(2018) Diabetes 67: 1272-1284
MeSH Terms: Animals, CD36 Antigens, CHO Cells, Carbohydrate Metabolism, Cells, Cultured, Cricetinae, Cricetulus, Diabetes Mellitus, Type 2, Female, Glucose, Humans, Insulin, Insulin Resistance, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Skeletal, Receptor, Insulin, Signal Transduction
Show Abstract · Added May 26, 2018
During reduced energy intake, skeletal muscle maintains homeostasis by rapidly suppressing insulin-stimulated glucose utilization. Loss of this adaptation is observed with deficiency of the fatty acid transporter CD36. A similar loss is also characteristic of the insulin-resistant state where CD36 is dysfunctional. To elucidate what links CD36 to muscle glucose utilization, we examined whether CD36 signaling might influence insulin action. First, we show that CD36 deletion specific to skeletal muscle reduces expression of insulin signaling and glucose metabolism genes. It decreases muscle ceramides but impairs glucose disposal during a meal. Second, depletion of CD36 suppresses insulin signaling in primary-derived human myotubes, and the mechanism is shown to involve functional CD36 interaction with the insulin receptor (IR). CD36 promotes tyrosine phosphorylation of IR by the Fyn kinase and enhances IR recruitment of P85 and downstream signaling. Third, pretreatment for 15 min with saturated fatty acids suppresses CD36-Fyn enhancement of IR phosphorylation, whereas unsaturated fatty acids are neutral or stimulatory. These findings define mechanisms important for muscle glucose metabolism and optimal insulin responsiveness. Potential human relevance is suggested by genome-wide analysis and RNA sequencing data that associate genetically determined low muscle CD36 expression to incidence of type 2 diabetes.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
20 MeSH Terms
CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels.
Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L, Pietka T, Xiong Y, Wei Y, Abumrad NN, Abumrad NA, Flynn CR
(2018) J Clin Endocrinol Metab 103: 1856-1866
MeSH Terms: Adult, African Americans, Bile Acids and Salts, CD36 Antigens, Case-Control Studies, Energy Metabolism, Fasting, Female, Genotype, Hormones, Humans, Intestinal Absorption, Middle Aged, Polymorphism, Single Nucleotide
Show Abstract · Added May 14, 2018
Context - Abnormal fatty acid (FA) metabolism contributes to diabetes and cardiovascular disease. The FA receptor CD36 has been linked to risk of metabolic syndrome. In rodents CD36 regulates various aspects of fat metabolism, but whether it has similar actions in humans is unknown. We examined the impact of a coding single-nucleotide polymorphism in CD36 on postprandial hormone and bile acid (BA) responses.
Objective - To examine whether the minor allele (G) of coding CD36 variant rs3211938 (G/T), which reduces CD36 level by ∼50%, influences hormonal responses to a high-fat meal (HFM).
Design - Obese African American (AA) women carriers of the G allele of rs3211938 (G/T) and weight-matched noncarriers (T/T) were studied before and after a HFM.
Setting - Two-center study.
Participants - Obese AA women.
Intervention - HFM.
Main Outcome Measures - Early preabsorptive responses (10 minutes) and extended excursions in plasma hormones [C-peptide, insulin, incretins, ghrelin fibroblast growth factor (FGF)19, FGF21], BAs, and serum lipoproteins (chylomicrons, very-low-density lipoprotein) were determined.
Results - At fasting, G-allele carriers had significantly reduced cholesterol and glycodeoxycholic acid and consistent but nonsignificant reductions of serum lipoproteins. Levels of GLP-1 and pancreatic polypeptide (PP) were reduced 60% to 70% and those of total BAs were 1.8-fold higher. After the meal, G-allele carriers displayed attenuated early (-10 to 10 minute) responses in insulin, C-peptide, GLP-1, gastric inhibitory peptide, and PP. BAs exhibited divergent trends in G allele carriers vs noncarriers concomitant with differential FGF19 responses.
Conclusions - CD36 plays an important role in the preabsorptive hormone and BA responses that coordinate brain and gut regulation of energy metabolism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
A Common CD36 Variant Influences Endothelial Function and Response to Treatment with Phosphodiesterase 5 Inhibition.
Shibao CA, Celedonio JE, Ramirez CE, Love-Gregory L, Arnold AC, Choi L, Okamoto LE, Gamboa A, Biaggioni I, Abumrad NN, Abumrad NA
(2016) J Clin Endocrinol Metab 101: 2751-8
MeSH Terms: Adult, CD36 Antigens, Cardiovascular Diseases, Case-Control Studies, Drug Resistance, Endothelium, Vascular, Female, Genetic Predisposition to Disease, Humans, Insulin Resistance, Metabolic Syndrome, Middle Aged, Obesity, Phosphodiesterase 5 Inhibitors, Polymorphism, Single Nucleotide, Sildenafil Citrate, Treatment Outcome, Vasodilation
Show Abstract · Added March 14, 2018
CONTEXT - The scavenger receptor CD36 influences the endothelial nitric oxide-cGMP pathway in vitro. Genetic variants that alter CD36 level are common in African Americans (AAs), a population at high risk of endothelial dysfunction.
OBJECTIVE - To examine if the minor allele (G) of coding CD36 variant rs3211938 (G/T) which reduces CD36 level by approximately 50% influences endothelial function, insulin sensitivity (IS), and the response to treatment with the nitric oxide-cGMP potentiator sildenafil.
DESIGN - IS (frequently sampled iv glucose tolerance) and endothelial function (flow mediated dilation [FMD]) were determined in age- and body mass index-matched obese AA women with or without the G allele of rs3211938 (protocol 1). Effect of chronic sildenafil treatment on IS and FMD was tested in AA women with metabolic syndrome and with/without the CD36 variant, using a randomized, placebo-controlled trial (protocol 2).
SETTING - Two-center study.
PARTICIPANTS - Obese AA women.
INTERVENTION - A total of 20-mg sildenafil citrate or placebo thrice daily for 4 weeks.
RESULTS - G allele carriers have lower FMD (P = .03) and cGMP levels (P = .01) than noncarriers. Sildenafil did not improve IS, mean difference 0.12 (95% confidence interval [CI], -0.33 to 0.58; P = .550). However, there was a significant interaction between FMD response to sildenafil and rs3211938 (P = .018). FMD tended to improve in G carriers, 2.9 (95% CI, -0.9 to 6.8; P = .126), whereas it deteriorated in noncarriers, -2.6 (95% CI, -5.1 to -0.1; P = .04).
CONCLUSIONS - The data document influence of a common genetic variant on susceptibility to endothelial dysfunction and its response to sildenafil treatment.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis.
Tao H, Yancey PG, Babaev VR, Blakemore JL, Zhang Y, Ding L, Fazio S, Linton MF
(2015) J Lipid Res 56: 1449-60
MeSH Terms: Animals, Apoptosis, Atherosclerosis, CD36 Antigens, Cell Survival, Collagen, Gene Deletion, Hematopoiesis, Macrophages, Mice, Mice, Inbred C57BL, Necrosis, Phagocytosis, Phagosomes, Phosphatidylinositol 3-Kinases, Phosphatidylserines, Protein Transport, Signal Transduction, rac1 GTP-Binding Protein, src-Family Kinases
Show Abstract · Added April 10, 2018
Macrophage apoptosis and efferocytosis are key determinants of atherosclerotic plaque inflammation and necrosis. Bone marrow transplantation studies in ApoE- and LDLR-deficient mice revealed that hematopoietic scavenger receptor class B type I (SR-BI) deficiency results in severely defective efferocytosis in mouse atherosclerotic lesions, resulting in a 17-fold higher ratio of free to macrophage-associated dead cells in lesions containing SR-BI(-/-) cells, 5-fold more necrosis, 65.2% less lesional collagen content, nearly 7-fold higher dead cell accumulation, and 2-fold larger lesion area. Hematopoietic SR-BI deletion elicited a maladaptive inflammatory response [higher interleukin (IL)-1β, IL-6, and TNF-α lower IL-10 and transforming growth factor β]. Efferocytosis of apoptotic thymocytes was reduced by 64% in SR-BI(-/-) versus WT macrophages, both in vitro and in vivo. In response to apoptotic cells, macrophage SR-BI bound with phosphatidylserine and induced Src phosphorylation and cell membrane recruitment, which led to downstream activation of phosphoinositide 3-kinase (PI3K) and Ras-related C3 botulinum toxin substrate 1 (Rac1) for engulfment and clearance of apoptotic cells, as inhibition of Src decreased PI3K, Rac1-GTP, and efferocytosis in WT cells. Pharmacological inhibition of Rac1 reduced macrophage efferocytosis in a SR-BI-dependent fashion, and activation of Rac1 corrected the defective efferocytosis in SR-BI(-/-) macrophages. Thus, deficiency of macrophage SR-BI promotes defective efferocytosis signaling via the Src/PI3K/Rac1 pathway, resulting in increased plaque size, necrosis, and inflammation.
Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes.
Babaev VR, Runner RP, Fan D, Ding L, Zhang Y, Tao H, Erbay E, Görgün CZ, Fazio S, Hotamisligil GS, Linton MF
(2011) Arterioscler Thromb Vasc Biol 31: 1283-90
MeSH Terms: Animals, Atherosclerosis, CD36 Antigens, Fatty Acid-Binding Proteins, Female, Gene Expression Regulation, Lipids, Macrophages, Mice, Neoplasm Proteins, PPAR gamma, Receptors, CCR2, Receptors, LDL
Show Abstract · Added December 10, 2013
OBJECTIVE - The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear.
METHODS AND RESULTS - We transplanted wild-type (WT), Mal1(-/-), or aP2(-/-) bone marrow into low-density lipoprotein receptor-null (LDLR(-/-)) mice and fed them a Western diet for 8 weeks. Mal1(-/-)→LDLR(-/-) mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT→LDLR(-/-) mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-γ (PPARγ) activity and upregulation of a PPARγ-related cholesterol trafficking gene, CD36. Mal1(-/-) macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1(-/-)→LDLR(-/-) mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT→LDLR(-/-) mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1(-/-)→LDLR(-/-) mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes.
CONCLUSION - Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPARγ activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients.
Aguer C, Mercier J, Man CY, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF, Raynaud de Mauverger E, Andreelli F, Foretz M, Kitzmann M
(2010) Diabetologia 53: 1151-63
MeSH Terms: AMP-Activated Protein Kinases, Acetyl-CoA Carboxylase, Analysis of Variance, Blotting, Western, Body Fat Distribution, CD36 Antigens, Cells, Cultured, Citrate (si)-Synthase, Diabetes Mellitus, Type 2, Fluorescent Antibody Technique, Humans, Lipids, Male, Middle Aged, Mitochondria, Muscle, Skeletal, Obesity, Phosphorylation, Waist Circumference
Show Abstract · Added March 4, 2013
AIMS/HYPOTHESIS - Intramyocellular lipids (IMCL) accumulation is a classical feature of metabolic diseases. We hypothesised that IMCL accumulate mainly as a consequence of increased adiposity and independently of type 2 diabetes. To test this, we examined IMCL accumulation in two different models and four different populations of participants: muscle biopsies and primary human muscle cells derived from non-obese and obese participants with or without type 2 diabetes. The mechanism regulating IMCL accumulation was also studied.
METHODS - Muscle biopsies were obtained from ten non-obese and seven obese participants without type 2 diabetes, and from eight non-obese and eight obese type 2 diabetic patients. Mitochondrial respiration, citrate synthase activity and both AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation were measured in muscle tissue. Lipid accumulation in muscle and primary myotubes was estimated by Oil Red O staining and fatty acid translocase (FAT)/CD36 localisation by immunofluorescence.
RESULTS - Obesity and type 2 diabetes are independently characterised by skeletal muscle IMCL accumulation and permanent FAT/CD36 relocation. Mitochondrial function is not reduced in type 2 diabetes. IMCL accumulation was independent of type 2 diabetes in cultured myotubes and was correlated with obesity markers of the donor. In obese participants, membrane relocation of FAT/CD36 is a determinant of IMCL accumulation.
CONCLUSIONS/INTERPRETATION - In skeletal muscle, mitochondrial function is normal in type 2 diabetes, while IMCL accumulation is dependent upon obesity or type 2 diabetes and is related to sarcolemmal FAT/CD36 relocation. In cultured myotubes, IMCL content and FAT/CD36 relocation are independent of type 2 diabetes, suggesting that distinct factors in obesity and type 2 diabetes contribute to permanent FAT/CD36 relocation ex vivo.
0 Communities
1 Members
0 Resources
19 MeSH Terms
CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD.
Okamura DM, Pennathur S, Pasichnyk K, López-Guisa JM, Collins S, Febbraio M, Heinecke J, Eddy AA
(2009) J Am Soc Nephrol 20: 495-505
MeSH Terms: Animals, CD36 Antigens, Chemokine CXCL10, Chemokines, Fibroblasts, Gene Expression, Hypercholesterolemia, Inflammation, Kidney, Lipoproteins, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-kappa B, Oxidation-Reduction, Oxidative Stress, RNA, Messenger, Renal Insufficiency, Chronic, Transforming Growth Factor beta
Show Abstract · Added February 3, 2012
Scavenger receptors play a central role in atherosclerosis by processing oxidized lipoproteins and mediating their cellular effects. Recent studies suggested that the atherogenic state correlates with progression of chronic kidney disease (CKD); therefore, scavenger receptors are candidate mediators of renal fibrogenesis. Here, we investigated the role of CD36, a class B scavenger receptor, in a hypercholesterolemic model of CKD. We placed CD36-deficient mice and wild-type male mice on a high-fat Western diet for 7 to 8 wk and then performed either sham or unilateral ureteral obstruction surgery. CD36-deficient mice developed significantly less fibrosis compared with wild-type mice at days 3, 7, and 14 after obstruction. Compared with wild-type mice, CD36-deficient mice had significantly more interstitial macrophages at 7 d but not at 14 d. CD36-deficient mice exhibited reduced levels of activated NF-kappaB and oxidative stress (assessed by measuring fatty acid-derived hydroxyoctadecadienoic acid and protein carbonyl content) and decreased accumulation of interstitial myofibroblasts compared with wild-type mice. These data suggest that CD36 is a key modulator of proinflammatory and oxidative pathways that promote fibrogenesis in CKD.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Severely altered cholesterol homeostasis in macrophages lacking apoE and SR-BI.
Yancey PG, Jerome WG, Yu H, Griffin EE, Cox BE, Babaev VR, Fazio S, Linton MF
(2007) J Lipid Res 48: 1140-9
MeSH Terms: Animals, Apolipoprotein A-I, Apolipoproteins E, CD36 Antigens, Cell Separation, Cholesterol, Filipin, Homeostasis, Macrophages, Mice, Mice, Knockout, Microscopy, Electron
Show Abstract · Added December 10, 2013
Mice deficient in scavenger receptor class B type I (SR-BI) and apolipoprotein E (apoE) [double knockout (DKO) mice] develop dyslipidemia, accelerated atherosclerosis, and myocardial infarction, and die prematurely. We examined effects of apoE and SR-BI deficiency on macrophage cholesterol homeostasis. DKO macrophages had increased total cholesterol (TC) stores (220-380 microg/mg protein) compared with apoE-/- cells (40 microg/mg), showed significant lysosomal lipid engorgement, and increased their TC by 34% after exposure to HDL. DKO macrophages from apoE-/- mice reconstituted with DKO bone marrow showed less cholesterol accumulation (89 microg/mg), suggesting that the dyslipidemia of DKO mice explains part of the cellular cholesterol defect. However, analyses of DKO and apoE-/- macrophages from transplanted apoE-/- mice revealed a role for macrophage SR-BI, inasmuch as the TC in DKO macrophages increased by 10% in the presence of HDL, whereas apoE-/- macrophage TC decreased by 33%. After incubation with HDL, the free cholesterol (FC) increased by 29% in DKO macrophages, and decreased by 8% in apoE-/- cells, and only DKO cells had FC in large peri-nuclear pools. Similar trends were observed with apoA-I as an acceptor. Thus, the abnormal cholesterol homeostasis of DKO macrophages is due to the plasma lipid environment of DKO mice and to altered trafficking of macrophage cholesterol. Both factors are likely to contribute to the accelerated atherosclerosis in DKO mice.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Macrophage apolipoprotein E reduces atherosclerosis and prevents premature death in apolipoprotein E and scavenger receptor-class BI double-knockout mice.
Yu H, Zhang W, Yancey PG, Koury MJ, Zhang Y, Fazio S, Linton MF
(2006) Arterioscler Thromb Vasc Biol 26: 150-6
MeSH Terms: Anemia, Animals, Apolipoproteins E, Bone Marrow Transplantation, CD36 Antigens, Cholesterol, Coronary Artery Disease, Disease Models, Animal, Hypercholesterolemia, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Phenotype, Triglycerides, Whole-Body Irradiation
Show Abstract · Added December 10, 2013
OBJECTIVE - Mice null for both apolipoprotein (apo)E and scavenger receptor (SR)-BI (DKO) develop severe hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarction, and premature death. The current study examines the ability of macrophage apoE to improve the dyslipidemia, reduce atherosclerosis, and rescue the lethal phenotype of DKO mice.
METHODS AND RESULTS - Initially, bone marrow transplantation (BMT) was unsuccessful, because the DKO mice died from a rapidly fatal anemia 3 to 5 days after lethal irradiation. Therefore, probucol was used to rescue the DKO mice during BMT and was discontinued 2-weeks after BMT, allowing successful reconstitution with donor marrow. Twelve male apoE(-/-)SR-BI(-/-) mice fed 0.5% probucol in a chow diet were lethally irradiated and transplanted with either wild-type (WT) or DKO bone marrow. Two-weeks after BMT, apoE was detected in serum in WT-->DKO mice, and mean serum cholesterol levels were reduced by 70% versus DKO-->DKO mice. Lipoprotein profiles and HDL subpopulations in WT-->DKO mice were similar to apoE(+/+)SR-BI(-/-)-->DKO mice and resembled those of SR-BI(-/-) mice. In WT-->DKO mice, aortic atherosclerosis was reduced by 88% to 90% versus DKO-->DKO mice. Furthermore, the DKO-->DKO mice died &8 weeks after BMT, whereas WT-->DKO mice exhibited a life span >40 weeks after BMT.
CONCLUSIONS - Macrophage apoE is able to rescue the lethal phenotype of apoE(-/-)SR-BI(-/-) mice by improving the dyslipidemia and dramatically reducing atherosclerotic lesion development.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein A-I.
Gruen ML, Plummer MR, Zhang W, Posey KA, Linton MF, Fazio S, Hasty AH
(2005) J Lipid Res 46: 2007-14
MeSH Terms: Animals, Apolipoprotein A-I, CD36 Antigens, Crosses, Genetic, Gene Expression, Lipase, Lipoproteins, Lipoproteins, HDL, Lipoproteins, LDL, Liver, Mice, Mice, Inbred C57BL, Mice, Knockout, Obesity, Particle Size, RNA, Messenger, Receptors, Immunologic, Receptors, Scavenger, Scavenger Receptors, Class B
Show Abstract · Added December 10, 2013
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.
1 Communities
3 Members
0 Resources
19 MeSH Terms