Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1060

Publication Record

Connections

Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.
Feng H, Gusev A, Pasaniuc B, Wu L, Long J, Abu-Full Z, Aittomäki K, Andrulis IL, Anton-Culver H, Antoniou AC, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blanco A, Blomqvist C, Boeckx B, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Brauch H, Brenner H, Briceno I, Broeks A, Brüning T, Burwinkel B, Cai Q, Caldés T, Caligo MA, Campbell I, Canisius S, Campa D, Carter BD, Carter J, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, GEMO Study Collaborators, EMBRACE Collaborators, GC-HBOC study Collaborators, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, De Leeneer K, Dennis J, Devilee P, Diez O, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gabrielson M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, Hake C, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Huang G, Hulick PJ, Humphreys K, Imyanitov EN, ABCTB Investigators, HEBON Investigators, BCFR Investigators, OCGN Investigators, Isaacs C, Jakimovska M, Jakubowska A, James P, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Jung A, Karlan BY, Khusnutdinova E, Kiiski JI, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leroux D, Leslie G, Lester J, Lesueur F, Lindor N, Lindström S, Lo WY, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martens JWM, Martinez ME, Matricardi L, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Kapoor PM, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Muranen TA, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Plaseska-Karanfilska D, Poppe B, Pradhan N, Prajzendanc K, Presneau N, Punie K, Pylkäs K, Radice P, Rantala J, Rashid MU, Rennert G, Risch HA, Robson M, Romero A, Saloustros E, Sandler DP, Santos C, Sawyer EJ, Schmidt MK, Schmidt DF, Schmutzler RK, Schoemaker MJ, Scott RJ, Sharma P, Shu XO, Simard J, Singer CF, Skytte AB, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Vieiro-Balo P, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Milne RL, Easton DF, Chenevix-Trench G, Zheng W, Kraft P, Jiang X
(2020) Genet Epidemiol 44: 442-468
MeSH Terms: Breast Neoplasms, Estrogens, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomics, Humans, Receptors, Estrogen, Risk Assessment, Transcriptome, Vesicular Transport Proteins
Show Abstract · Added March 3, 2020
Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.
© 2020 The Authors. Genetic Epidemiology published by Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Utilization of Cardiac Surveillance Tests in Survivors of Breast Cancer and Lymphoma After Anthracycline-Based Chemotherapy.
Ruddy KJ, Sangaralingham LR, Van Houten H, Nowsheen S, Sandhu N, Moslehi J, Neuman H, Jemal A, Haddad TC, Blaes AH, Villarraga HR, Thompson C, Shah ND, Herrmann J
(2020) Circ Cardiovasc Qual Outcomes 13: e005984
MeSH Terms: Administrative Claims, Healthcare, Adolescent, Adult, Aged, Anthracyclines, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Cancer Survivors, Data Warehousing, Echocardiography, Female, Guideline Adherence, Heart Diseases, Humans, Lymphoma, Male, Middle Aged, Practice Guidelines as Topic, Practice Patterns, Physicians', Predictive Value of Tests, Retrospective Studies, Risk Assessment, Risk Factors, Time Factors, Treatment Outcome, United States, Young Adult
Show Abstract · Added May 29, 2020
BACKGROUND - The National Comprehensive Cancer Network and American Society of Clinical Oncology recommend consideration of the use of echocardiography 6 to 12 months after completion of anthracycline-based chemotherapy in at-risk populations. Assessment of BNP (B-type natriuretic peptide) has also been suggested by the American College of Cardiology/American Heart Association/Heart Failure Society of America for the identification of Stage A (at risk) heart failure patients. The real-world frequency of the use of these tests in patients after receipt of anthracycline therapy, however, has not been studied previously.
METHODS AND RESULTS - In this retrospective study, using administrative claims data from the OptumLabs Data Warehouse, we identified 31 447 breast cancer and lymphoma patients (age ≥18 years) who were treated with an anthracycline in the United States between January 1, 2008 and January 31, 2018. Continuous medical and pharmacy coverage was required for at least 6 months before the initial anthracycline dose and 12 months after the final dose. Only 36.1% of patients had any type of cardiac surveillance (echocardiography, BNP, or cardiac imaging) in the year following completion of anthracycline therapy (29.7% echocardiography). Surveillance rate increased from 37.5% in 2008 to 42.7% in 2018 (25.6% in 2008 to 40.5% echocardiography in 2018). Lymphoma patients had a lower likelihood of any surveillance compared with patients with breast cancer (odds ratio, 0.79 [95% CI, 0.74-0.85]; <0.001). Patients with preexisting diagnoses of coronary artery disease and arrhythmia had the highest likelihood of cardiac surveillance (odds ratio, 1.54 [95% CI, 1.39-1.69] and odds ratio, 1.42 [95% CI, 1.3-1.53]; <0.001 for both), although no single comorbidity was associated with a >50% rate of surveillance.
CONCLUSIONS - The majority of survivors of breast cancer and lymphoma who have received anthracycline-based chemotherapy do not undergo cardiac surveillance after treatment, including those with a history of cardiovascular comorbidities, such as heart failure.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Endosomolytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy.
Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D
(2020) ACS Appl Mater Interfaces 12: 4308-4322
MeSH Terms: Animals, Breast Neoplasms, Drug Delivery Systems, Endosomes, Female, Genetic Therapy, Humans, Mice, MicroRNAs, Nanoparticles, RNA, Small Interfering, Silicon Dioxide
Show Abstract · Added March 19, 2020
Combination therapies consisting of multiple short therapeutic RNAs, such as small interfering RNA (siRNA) and microRNA (miRNA), have enormous potential in cancer treatment as they can precisely silence a specific set of oncogenes and target multiple disease-related pathways. However, clinical use of siRNA/miRNA combinations is limited by the availability of safe and efficient systemic delivery systems with sufficient tumor penetrating and endosomal escaping capabilities. This study reports on the development of multifunctional tumor-penetrating mesoporous silica nanoparticles (iMSNs) for simultaneous delivery of siRNA (siPlk1) and miRNA (miR-200c), using encapsulation of a photosensitizer indocyanine green (ICG) to facilitate endosomal escape and surface conjugation of the iRGD peptide to enable deep tumor penetration. Increased cell uptake of the nanoparticles was observed in both 3D tumor spheroids in vitro and in orthotopic MDA-MB-231 breast tumors in vivo. Using a galectin-8 recruitment assay, we showed that reactive oxygen species generated by ICG upon light irradiation functioned as an endosomolytic stimulus that caused release of the siRNA/miRNA combination from endosomes. Co-delivery of the therapeutic RNAs displayed combined cell killing activity in cancer cells. Systemic intravenous treatment of metastatic breast cancer with the iMSNs loaded with siPlk1 and miR-200c resulted in a significant suppression of the primary tumor growth and in marked reduction of metastasis upon short light irradiation of the primary tumor. This work demonstrates that siRNA-miRNA combination assisted by the photodynamic effect and tumor penetrating delivery system may provide a promising approach for metastatic cancer treatment.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, GEMO Study Collaborators, EMBRACE Collaborators, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gago-Dominguez M, Gambino G, Ganz PA, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Tibiletti MG, Greene MH, Grip M, Gronwald J, Grundy A, Guénel P, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hartikainen JM, Hartman M, He W, Healey CS, Heemskerk-Gerritsen BAM, Heyworth J, Hillemanns P, Hogervorst FBL, Hollestelle A, Hooning MJ, Hopper JL, Howell A, Huang G, Hulick PJ, Imyanitov EN, KConFab Investigators, HEBON Investigators, ABCTB Investigators, Isaacs C, Iwasaki M, Jager A, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kang D, Kapoor PM, Karlan BY, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Kirk J, Kitahara CM, Ko YD, Konstantopoulou I, Kosma VM, Koutros S, Kubelka-Sabit K, Kwong A, Kyriacou K, Laitman Y, Lambrechts D, Lee E, Leslie G, Lester J, Lesueur F, Lindblom A, Lo WY, Long J, Lophatananon A, Loud JT, Lubiński J, MacInnis RJ, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matsuo K, Maurer T, Mavroudis D, Mayes R, McGuffog L, McLean C, Mebirouk N, Meindl A, Miller A, Miller N, Montagna M, Moreno F, Muir K, Mulligan AM, Muñoz-Garzon VM, Muranen TA, Narod SA, Nassir R, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nikitina-Zake L, Norman A, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Osorio A, Pankratz VS, Papp J, Park SK, Park-Simon TW, Parsons MT, Paul J, Pedersen IS, Peissel B, Peshkin B, Peterlongo P, Peto J, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Prokofyeva D, Pujana MA, Pylkäs K, Radice P, Ramus SJ, Rantala J, Rau-Murthy R, Rennert G, Risch HA, Robson M, Romero A, Rossing M, Saloustros E, Sánchez-Herrero E, Sandler DP, Santamariña M, Saunders C, Sawyer EJ, Scheuner MT, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Scott C, Scott RJ, Senter L, Seynaeve CM, Shah M, Sharma P, Shen CY, Shu XO, Singer CF, Slavin TP, Smichkoska S, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Stoppa-Lyonnet D, Sutter C, Swerdlow AJ, Tamimi RM, Tan YY, Tapper WJ, Taylor JA, Teixeira MR, Tengström M, Teo SH, Terry MB, Teulé A, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Torres-Mejía G, Troester MA, Truong T, Tung N, Tzardi M, Ulmer HU, Vachon CM, van Asperen CJ, van der Kolk LE, van Rensburg EJ, Vega A, Viel A, Vijai J, Vogel MJ, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wildiers H, Winqvist R, Wolk A, Wu AH, Yannoukakos D, Zhang Y, Zheng W, Hunter D, Pharoah PDP, Chang-Claude J, García-Closas M, Schmidt MK, Milne RL, Kristensen VN, French JD, Edwards SL, Antoniou AC, Chenevix-Trench G, Simard J, Easton DF, Kraft P, Dunning AM
(2020) Nat Genet 52: 56-73
MeSH Terms: Bayes Theorem, Biomarkers, Tumor, Breast Neoplasms, Chromosome Mapping, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Regulatory Sequences, Nucleic Acid, Risk Factors
Show Abstract · Added March 3, 2020
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Discovery of rare coding variants in OGDHL and BRCA2 in relation to breast cancer risk in Chinese women.
Guo X, Long J, Chen Z, Shu XO, Xiang YB, Wen W, Zeng C, Gao YT, Cai Q, Zheng W
(2020) Int J Cancer 146: 2175-2181
MeSH Terms: Adult, Aged, BRCA2 Protein, Breast Neoplasms, Case-Control Studies, China, Databases, Genetic, Female, Gene Frequency, Genetic Predisposition to Disease, Humans, Ketoglutarate Dehydrogenase Complex, Middle Aged, Mutation, Missense, Whole Exome Sequencing
Show Abstract · Added March 3, 2020
The missing heritability of breast cancer could be partially attributed to rare variants (MAF < 0.5%). To identify breast cancer-associated rare coding variants, we conducted whole-exome sequencing (~50×) in genomic DNA samples obtained from 831 breast cancer cases and 839 controls of Chinese females. Using burden tests for each gene that included rare missense or predicted deleterious variants, we identified 29 genes showing promising associations with breast cancer risk. We replicated the association for two genes, OGDHL and BRCA2, at a Bonferroni-corrected p < 0.05, by genotyping an independent set of samples from 1,628 breast cancer cases and 1,943 controls. The association for OGDHL was primarily driven by three predicted deleterious variants (p.Val827Met, p.Pro839Leu, p.Phe836Ser; p < 0.01 for all). For BRCA2, we characterized a total of 27 disruptive variants, including 18 nonsense, six frameshift and three splicing variants, whereas they were only detected in cases, but none of the controls. All of these variants were either very rare (AF < 0.1%) or not detected in >4,500 East Asian women from the genome Aggregation database (gnomAD), providing additional support to our findings. Our study revealed a potential novel gene and multiple disruptive variants of BRCA2 for breast cancer risk, which may identify high-risk women in Chinese populations.
© 2019 UICC.
0 Communities
1 Members
0 Resources
15 MeSH Terms
TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR Metastatic Triple-Negative Breast Cancer.
Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, Van Poznak C, Storniolo AM, Nangia JR, Gonzalez-Ericsson PI, Sanchez V, Johnson KN, Abramson RG, Chen SC, Shyr Y, Arteaga CL, Wolff AC, Pietenpol JA, Translational Breast Cancer Research Consortium
(2020) Clin Cancer Res 26: 2111-2123
MeSH Terms: Androgen Receptor Antagonists, Antineoplastic Combined Chemotherapy Protocols, Class I Phosphatidylinositol 3-Kinases, Female, Humans, Imidazoles, Middle Aged, Neoplasm Metastasis, Oxazepines, Phenylthiohydantoin, Protein Kinase Inhibitors, Receptors, Androgen, Survival Rate, Triple Negative Breast Neoplasms
Show Abstract · Added March 30, 2020
PURPOSE - Preclinical data demonstrating androgen receptor (AR)-positive (AR) triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists, and PI3K inhibition catalyzed an investigator-initiated, multi-institutional phase Ib/II study TBCRC032. The trial investigated the safety and efficacy of the AR-antagonist enzalutamide alone or in combination with the PI3K inhibitor taselisib in patients with metastatic AR (≥10%) breast cancer.
PATIENTS AND METHODS - Phase Ib patients [estrogen receptor positive (ER) or TNBC] with AR breast cancer received 160 mg enzalutamide in combination with taselisib to determine dose-limiting toxicities and the maximum tolerated dose (MTD). Phase II TNBC patients were randomized to receive either enzalutamide alone or in combination with 4 mg taselisib until disease progression. Primary endpoint was clinical benefit rate (CBR) at 16 weeks.
RESULTS - The combination was tolerated, and the MTD was not reached. The adverse events were hyperglycemia and skin rash. Overall, CBR for evaluable patients receiving the combination was 35.7%, and median progression-free survival (PFS) was 3.4 months. Luminal AR (LAR) TNBC subtype patients trended toward better response compared with non-LAR (75.0% vs. 12.5%, = 0.06), and increased PFS (4.6 vs. 2.0 months, = 0.082). Genomic analyses revealed subtype-specific treatment response, and novel fusions and AR splice variants.
CONCLUSIONS - The combination of enzalutamide and taselisib increased CBR in TNBC patients with AR tumors. Correlative analyses suggest AR protein expression alone is insufficient for identifying patients with AR-dependent tumors and knowledge of tumor LAR subtype and AR splice variants may identify patients more or less likely to benefit from AR antagonists.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
14 MeSH Terms
PREX1 drives spontaneous bone dissemination of ER+ breast cancer cells.
Clements ME, Johnson RW
(2020) Oncogene 39: 1318-1334
MeSH Terms: Animals, Apoptosis, Biomarkers, Tumor, Bone Neoplasms, Breast Neoplasms, Cell Movement, Cell Proliferation, Female, Gene Expression Regulation, Neoplastic, Guanine Nucleotide Exchange Factors, Humans, Mice, Mice, Nude, Receptors, Estrogen, Tumor Cells, Cultured, Xenograft Model Antitumor Assays
Show Abstract · Added March 3, 2020
A significant proportion of breast cancer patients develop bone metastases, but the mechanisms regulating tumor cell dissemination from the primary site to the skeleton remain largely unknown. Using a novel model of spontaneous bone metastasis derived from human ER+ MCF7 cells, molecular profiling revealed increased PREX1 expression in a cell line established from bone-disseminated MCF7 cells (MCF7b), which were more migratory, invasive, and adhesive in vitro compared with parental MCF7 cells, and this phenotype was mediated by PREX1. MCF7b cells grew poorly in the primary tumor site when reinoculated in vivo, suggesting that these cells are primed to grow in the bone, and were enriched in skeletal sites of metastasis over soft tissue sites. Skeletal dissemination from the primary tumor was reversed with PREX1 knockdown, indicating that PREX1 is a key driver of spontaneous dissemination of tumor cells from the primary site to the bone marrow. In breast cancer patients, PREX1 levels are significantly increased in ER+ tumors and associated with invasive disease and distant metastasis. Together, these findings implicate PREX1 in spontaneous bone dissemination and provide a significant advance to the molecular mechanisms by which breast cancer cells disseminate from the primary tumor site to bone.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Breast Cancer Dormancy in Bone.
Clements ME, Johnson RW
(2019) Curr Osteoporos Rep 17: 353-361
MeSH Terms: Animals, Bone Marrow, Bone Neoplasms, Breast Neoplasms, Disease Models, Animal, Disease Progression, Female, Humans, Mice, Neoplasm Metastasis, Signal Transduction, Tumor Microenvironment
Show Abstract · Added March 3, 2020
PURPOSE OF REVIEW - The goal of this review is to summarize recent experimental and clinical evidence for metastatic latency and the molecular mechanisms that regulate tumor dormancy in the bone.
RECENT FINDINGS - Tumor dormancy contributes to the progression of metastasis and thus has significant clinical implications for prognosis and treatment. Tumor-intrinsic signaling and specialized bone marrow niches play a pivotal role in determining the dormancy status of bone disseminated tumor cells. Experimental models have provided significant insight into the effects of the bone microenvironment on tumor cells; however, these models remain limited in their ability to study dormancy. Despite recent advances in the mechanistic understanding of how tumor cells remain dormant in the bone for prolonged periods of time, the signals that trigger spontaneous dormancy escape remain unclear. This review highlights the need for further investigation of mechanisms underlying tumor dormancy using clinically relevant models.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Azzollini J, Balmaña J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Borg A, Brauch H, Brenner H, Broeks A, Burwinkel B, Caldés T, Caligo MA, Campa D, Campbell I, Canzian F, Carter J, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, Dennis J, Devilee P, Diez O, Dörk T, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Friedman E, Frost D, Gabrielson M, Gago-Dominguez M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hoover RN, Hopper JL, Hulick PJ, Humphreys K, Imyanitov EN, ABCTB Investigators, HEBON Investigators, BCFR Investigators, Isaacs C, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Karlan BY, Khusnutdinova E, Kiiski JI, Ko YD, Jones ME, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leslie G, Lester J, Lesueur F, Lindström S, Long J, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Margolin S, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Nussbaum RL, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Pharoah PDP, Plaseska-Karanfilska D, Poppe B, Presneau N, Radice P, Rantala J, Rennert G, Risch HA, Saloustros E, Sanden K, Sawyer EJ, Schmidt MK, Schmutzler RK, Sharma P, Shu XO, Simard J, Singer CF, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Wang Q, Wappenschmidt B, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Kraft P, Antoniou AC, Zheng W, Easton DF, Milne RL, Beesley J, Chenevix-Trench G
(2019) Nat Commun 10: 1741
MeSH Terms: Breast Neoplasms, Female, Gene Expression Profiling, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Quantitative Trait Loci
Show Abstract · Added July 17, 2019
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
0 Communities
1 Members
0 Resources
MeSH Terms
Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells.
Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F, Reinhart-King CA
(2019) Proc Natl Acad Sci U S A 116: 7867-7872
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Energy Metabolism, Female, Glucose, Humans, Intracellular Space, Neoplasm Invasiveness
Show Abstract · Added April 10, 2019
The ability of primary tumor cells to invade into adjacent tissues, followed by the formation of local or distant metastasis, is a lethal hallmark of cancer. Recently, locomoting clusters of tumor cells have been identified in numerous cancers and associated with increased invasiveness and metastatic potential. However, how the collective behaviors of cancer cells are coordinated and their contribution to cancer invasion remain unclear. Here we show that collective invasion of breast cancer cells is regulated by the energetic statuses of leader and follower cells. Using a combination of in vitro spheroid and ex vivo organoid invasion models, we found that cancer cells dynamically rearrange leader and follower positions during collective invasion. Cancer cells invade cooperatively in denser collagen matrices by accelerating leader-follower switching thus decreasing leader cell lifetime. Leader cells exhibit higher glucose uptake than follower cells. Moreover, their energy levels, as revealed by the intracellular ATP/ADP ratio, must exceed a threshold to invade. Forward invasion of the leader cell gradually depletes its available energy, eventually leading to leader-follower transition. Our computational model based on intracellular energy homeostasis successfully recapitulated the dependence of leader cell lifetime on collagen density. Experiments further supported model predictions that decreasing the cellular energy level by glucose starvation decreases leader cell lifetime whereas increasing the cellular energy level by AMP-activated kinase (AMPK) activation does the opposite. These findings highlight coordinated invasion and its metabolic regulation as potential therapeutic targets of cancer.
0 Communities
1 Members
0 Resources
11 MeSH Terms