Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1941

Publication Record

Connections

Rapid whole-brain quantitative magnetization transfer imaging using 3D selective inversion recovery sequences.
Cronin MJ, Xu J, Bagnato F, Gochberg DF, Gore JC, Dortch RD
(2020) Magn Reson Imaging 68: 66-74
MeSH Terms: Adult, Algorithms, Brain, Brain Mapping, Computer Simulation, Echo-Planar Imaging, Female, Healthy Volunteers, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Male, Models, Theoretical, Myelin Sheath, Reproducibility of Results, White Matter
Show Abstract · Added March 18, 2020
Selective inversion recovery (SIR) is a quantitative magnetization transfer (qMT) method that provides estimates of parameters related to myelin content in white matter, namely the macromolecular pool-size-ratio (PSR) and the spin-lattice relaxation rate of the free pool (R), without the need for independent estimates of ∆B, B, and T. Although the feasibility of performing SIR in the human brain has been demonstrated, the scan times reported previously were too long for whole-brain applications. In this work, we combined optimized, short-TR acquisitions, SENSE/partial-Fourier accelerations, and efficient 3D readouts (turbo spin-echo, SIR-TSE; echo-planar imaging, SIR-EPI; and turbo field echo, SIR-TFE) to obtain whole-brain data in 18, 10, and 7 min for SIR-TSE, SIR-EPI, SIR-TFE, respectively. Based on numerical simulations, all schemes provided accurate parameter estimates in large, homogenous regions; however, the shorter SIR-TFE scans underestimated focal changes in smaller lesions due to blurring. Experimental studies in healthy subjects (n = 8) yielded parameters that were consistent with literature values and repeatable across scans (coefficient of variation: PSR = 2.2-6.4%, R = 0.6-1.4%) for all readouts. Overall, SIR-TFE parameters exhibited the lowest variability, while SIR-EPI parameters were adversely affected by susceptibility-related image distortions. In patients with relapsing remitting multiple sclerosis (n = 2), focal changes in SIR parameters were observed in lesions using all three readouts; however, contrast was reduced in smaller lesions for SIR-TFE, which was consistent with the numerical simulations. Together, these findings demonstrate that efficient, accurate, and repeatable whole-brain SIR can be performed using 3D TFE, EPI, or TSE readouts; however, the appropriate readout should be tailored to the application.
Copyright © 2020 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Correlates of Cognitive Function in Sickle Cell Disease: A Meta-Analysis.
Prussien KV, Siciliano RE, Ciriegio AE, Anderson AS, Sathanayagam R, DeBaun MR, Jordan LC, Compas BE
(2020) J Pediatr Psychol 45: 145-155
MeSH Terms: Adolescent, Adult, Anemia, Sickle Cell, Brain, Child, Cognition, Executive Function, Female, Humans, Male, Problem Solving, Ultrasonography, Doppler, Transcranial
Show Abstract · Added March 24, 2020
OBJECTIVE - To provide a comprehensive quantitative review of biological, environmental, and behavioral correlates across domains of cognitive function in sickle cell disease (SCD).
METHODS - Forty-seven studies were identified in PubMed, MedLine, and PsycINFO involving 2573 participants with SCD.
RESULTS - Meta-analytic findings across all identified samples indicate that hemoglobin and hematocrit were positively correlated with Full Scale IQ [FSIQ; r = .15, 95% confidence interval (CI) = .10 to .21], language and verbal reasoning (r = .18, 95% CI = .11 to .24), and executive function (r = .10, 95% CI = .01 to .19) with small effects and significant heterogeneity. Transcranial Doppler velocity was negatively associated with visual spatial and perceptual reasoning (r = -.18, 95% CI = -.31 to -.05). Socioeconomic status was positively associated with FSIQ (r = .23, 95% CI = .17 to .28), language and verbal reasoning (r = .28, 95% CI = .09 to .45), visual spatial and perceptual reasoning (r = .26, 95% CI = .09 to .41), and executive function (r = .18, 95% CI = .07 to .28) with small to medium effects. Finally, total behavioral problems were negatively associated with FSIQ (r = -.12, 95% CI = -.21 to -.02) such that participants with lower FSIQ exhibited greater behavioral and emotional problems.
CONCLUSIONS - Findings provide evidence for biological, environmental, and psychosocial corelates across multiple domains of cognitive function in SCD. More research on more specific cognitive domains and psychosocial correlates is needed in addition to assessments of interactional models among risk factors.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications.
Englot DJ, Morgan VL, Chang C
(2020) Epilepsia 61: 189-202
MeSH Terms: Arousal, Brain Mapping, Epilepsy, Temporal Lobe, Humans, Nerve Net, Neuroimaging
Show Abstract · Added March 18, 2020
Mesial temporal lobe epilepsy (mTLE) is a neurological disorder in which patients suffer from frequent consciousness-impairing seizures, broad neurocognitive deficits, and diminished quality of life. Although seizures in mTLE originate focally in the hippocampus or amygdala, mTLE patients demonstrate cognitive deficits that extend beyond temporal lobe function-such as decline in executive function, cognitive processing speed, and attention-as well as diffuse decreases in neocortical metabolism and functional connectivity. Given prior observations that mTLE patients exhibit impairments in vigilance, and that seizures may disrupt the activity and long-range connectivity of subcortical brain structures involved in vigilance regulation, we propose that subcortical activating networks underlying vigilance play a critical role in mediating the widespread neural and cognitive effects of focal mTLE. Here, we review evidence for impaired vigilance in mTLE, examine clinical implications and potential network underpinnings, and suggest neuroimaging strategies for determining the relationship between vigilance, brain connectivity, and neurocognition in patients and healthy controls.
Wiley Periodicals, Inc. © 2020 International League Against Epilepsy.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Resting-State SEEG May Help Localize Epileptogenic Brain Regions.
Goodale SE, González HFJ, Johnson GW, Gupta K, Rodriguez WJ, Shults R, Rogers BP, Rolston JD, Dawant BM, Morgan VL, Englot DJ
(2020) Neurosurgery 86: 792-801
MeSH Terms: Adult, Brain, Brain Mapping, Cohort Studies, Electroencephalography, Epilepsies, Partial, Female, Humans, Imaging, Three-Dimensional, Male, Middle Aged, Neurosurgical Procedures, Rest, Stereotaxic Techniques
Show Abstract · Added March 18, 2020
BACKGROUND - Stereotactic electroencephalography (SEEG) is a minimally invasive neurosurgical method to localize epileptogenic brain regions in epilepsy but requires days in the hospital with interventions to trigger several seizures.
OBJECTIVE - To make initial progress in the development of network analysis methods to identify epileptogenic brain regions using brief, resting-state SEEG data segments, without requiring seizure recordings.
METHODS - In a cohort of 15 adult focal epilepsy patients undergoing SEEG, we evaluated functional connectivity (alpha-band imaginary coherence) across sampled regions using brief (2 min) resting-state data segments. Bootstrapped logistic regression was used to generate a model to predict epileptogenicity of individual regions.
RESULTS - Compared to nonepileptogenic structures, we found increased functional connectivity within epileptogenic regions (P < .05) and between epileptogenic areas and other structures (P < .01, paired t-tests, corrected). Epileptogenic areas also demonstrated higher clustering coefficient (P < .01) and betweenness centrality (P < .01), and greater decay of functional connectivity with distance (P < .05, paired t-tests, corrected). Our functional connectivity model to predict epileptogenicity of individual regions demonstrated an area under the curve of 0.78 and accuracy of 80.4%.
CONCLUSION - Our study represents a preliminary step towards defining resting-state SEEG functional connectivity patterns to help localize epileptogenic brain regions ahead of neurosurgical treatment without requiring seizure recordings.
Copyright © 2019 by the Congress of Neurological Surgeons.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Structures of the AMPA receptor in complex with its auxiliary subunit cornichon.
Nakagawa T
(2019) Science 366: 1259-1263
MeSH Terms: Animals, Brain, Cryoelectron Microscopy, Glutamic Acid, Ion Channel Gating, Protein Structure, Secondary, Protein Transport, Rats, Receptors, AMPA, Receptors, Glutamate, Synaptic Transmission
Show Abstract · Added March 3, 2020
In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes are critical for synaptic plasticity, learning, and memory. The two major categories of AMPAR auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs); these subunits share little homology and play distinct roles in controlling ion channel gating and trafficking of AMPAR. Here, I report high-resolution cryo-electron microscopy structures of AMPAR in complex with CNIH3. Contrary to its predicted membrane topology, CNIH3 lacks an extracellular domain and instead contains four membrane-spanning helices. The protein-protein interaction interface that dictates channel modulation and the lipids surrounding the complex are revealed. These structures provide insights into the molecular mechanism for ion channel modulation and assembly of AMPAR/CNIH3 complexes.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Cerebral blood flow in 5- to 8-month-olds: Regional tissue maturity is associated with infant affect.
Catalina Camacho M, King LS, Ojha A, Garcia CM, Sisk LM, Cichocki AC, Humphreys KL, Gotlib IH
(2020) Dev Sci 23: e12928
MeSH Terms: Brain, Cerebrovascular Circulation, Emotions, Female, Humans, Infant, Magnetic Resonance Imaging, Male, Mothers, Prefrontal Cortex, Stress, Psychological, Temperament
Show Abstract · Added March 3, 2020
Infancy is marked by rapid neural and emotional development. The relation between brain function and emotion in infancy, however, is not well understood. Methods for measuring brain function predominantly rely on the BOLD signal; however, interpretation of the BOLD signal in infancy is challenging because the neuronal-hemodynamic relation is immature. Regional cerebral blood flow (rCBF) provides a context for the infant BOLD signal and can yield insight into the developmental maturity of brain regions that may support affective behaviors. This study aims to elucidate the relations among rCBF, age, and emotion in infancy. One hundred and seven mothers reported their infants' (infant age M ± SD = 6.14 ± 0.51 months) temperament. A subsample of infants completed MRI scans, 38 of whom produced usable perfusion MRI during natural sleep to quantify rCBF. Mother-infant dyads completed the repeated Still-Face Paradigm, from which infant affect reactivity and recovery to stress were quantified. We tested associations of infant age at scan, temperament factor scores, and observed affect reactivity and recovery with voxel-wise rCBF. Infant age was positively associated with CBF in nearly all voxels, with peaks located in sensory cortices and the ventral prefrontal cortex, supporting the formulation that rCBF is an indicator of tissue maturity. Temperamental Negative Affect and recovery of positive affect following a stressor were positively associated with rCBF in several cortical and subcortical limbic regions, including the orbitofrontal cortex and inferior frontal gyrus. This finding yields insight into the nature of affective neurodevelopment during infancy. Specifically, infants with relatively increased prefrontal cortex maturity may evidence a disposition toward greater negative affect and negative reactivity in their daily lives yet show better recovery of positive affect following a social stressor.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices.
Thal LB, Mann VR, Sprinzen D, McBride JR, Reid KR, Tomlinson ID, McMahon DG, Cohen BE, Rosenthal SJ
(2020) Biomater Sci 8: 837-845
MeSH Terms: Animals, Brain, Brain Chemistry, Ligands, Mice, Microscopy, Fluorescence, Microtomy, Proteins, Quantum Dots, Selenium Compounds, Staining and Labeling, Zinc Compounds
Show Abstract · Added March 18, 2020
Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci.
Marees AT, Gamazon ER, Gerring Z, Vorspan F, Fingal J, van den Brink W, Smit DJA, Verweij KJH, Kranzler HR, Sherva R, Farrer L, International Cannabis Consortium, Gelernter J, Derks EM
(2020) Drug Alcohol Depend 206: 107703
MeSH Terms: Blood, Brain, Drug Users, Gene Expression Profiling, Gene Expression Regulation, Genetic Predisposition to Disease, Humans, Meta-Analysis as Topic, Phenotype, Quantitative Trait Loci, Substance-Related Disorders, Transcriptome
Show Abstract · Added December 5, 2019
BACKGROUND - Little is known about the functional mechanisms through which genetic loci associated with substance use traits ascertain their effect. This study aims to identify and functionally annotate loci associated with substance use traits based on their role in genetic regulation of gene expression.
METHODS - We evaluated expression Quantitative Trait Loci (eQTLs) from 13 brain regions and whole blood of the Genotype-Tissue Expression (GTEx) database, and from whole blood of the Depression Genes and Networks (DGN) database. The role of single eQTLs was examined for six substance use traits: alcohol consumption (N = 537,349), cigarettes per day (CPD; N = 263,954), former vs. current smoker (N = 312,821), age of smoking initiation (N = 262,990), ever smoker (N = 632,802), and cocaine dependence (N = 4,769). Subsequently, we conducted a gene level analysis of gene expression on these substance use traits using S-PrediXcan.
RESULTS - Using an FDR-adjusted p-value <0.05 we found 2,976 novel candidate genetic loci for substance use traits, and identified genes and tissues through which these loci potentially exert their effects. Using S-PrediXcan, we identified significantly associated genes for all substance traits.
DISCUSSION - Annotating genes based on transcriptomic regulation improves the identification and functional characterization of candidate loci and genes for substance use traits.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Temporo-frontal activation during phonological processing predicts gains in arithmetic facts in young children.
Suárez-Pellicioni M, Fuchs L, Booth JR
(2019) Dev Cogn Neurosci 40: 100735
MeSH Terms: Adolescent, Brain, Brain Mapping, Child, Female, Frontal Lobe, Humans, Male, Mathematics, Phonetics, Temporal Lobe
Show Abstract · Added March 3, 2020
Behavioral studies have shown discrepant results regarding the role of phonology in predicting math gains. The objective of this study was to use fMRI to study the role of activation during a rhyming judgment task in predicting behavioral gains on math fluency, multiplication, and subtraction skill. We focused within the left middle/superior temporal gyrus and left inferior frontal gyrus, brain areas associated with the storage of phonological representations and with their access, respectively. We ran multiple regression analyses to determine whether activation predicted gains in the three math measures, separately for younger (i.e. 10 years old) and older (i.e 12 years old) children. Results showed that activation in both temporal and frontal cortex only predicted gains in fluency and multiplication skill, and only for younger children. This study suggests that both temporal and frontal cortex activation during phonological processing are important in predicting gains in math tasks that involve the retrieval of facts that are stored as phonological codes in memory. Moreover, these results were specific to younger children, suggesting that phonology is most important in the early stages of math development. When the math task involved subtractions, which relies on quantity representations, phonological processes were not important in driving gains.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Language Mapping in Aphasia.
Wilson SM, Eriksson DK, Yen M, Demarco AT, Schneck SM, Lucanie JM
(2019) J Speech Lang Hear Res 62: 3937-3946
MeSH Terms: Aphasia, Brain Mapping, Forecasting, Humans, Language, Magnetic Resonance Imaging, Phonetics, Reproducibility of Results, Semantics
Show Abstract · Added March 30, 2020
Purpose Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. To make progress in characterizing the nature of this process, we need feasible, reliable, and valid methods for identifying language regions of the brain in individuals with aphasia. This article reviews 3 recent studies from our lab in which we have developed and validated several novel functional magnetic resonance imaging paradigms for language mapping in aphasia. Method In the 1st study, we investigated the reliability and validity of 4 language mapping paradigms in neurologically normal older adults. In the 2nd study, we developed a novel adaptive semantic matching paradigm and assessed its feasibility, reliability, and validity in individuals with and without aphasia. In the 3rd study, we developed and evaluated 2 additional adaptive paradigms-rhyme judgment and syllable counting-for mapping phonological encoding regions. Results We found that the adaptive semantic matching paradigm could be performed by most individuals with aphasia and yielded reliable and valid maps of core perisylvian language regions in each individual participant. The psychometric properties of this paradigm were superior to those of other commonly used paradigms such as narrative comprehension and picture naming. The adaptive rhyme judgment paradigm was capable of identifying fronto-parietal phonological encoding regions in individual participants. Conclusion Adaptive language mapping paradigms offer a promising approach for future research on the neural basis of recovery from aphasia. Presentation Video https://doi.org/10.23641/asha.10257584.
0 Communities
1 Members
0 Resources
9 MeSH Terms