Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 96

Publication Record

Connections

Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques.
Napolitano F, Booth Warren E, Migliarini S, Punzo D, Errico F, Li Q, Thiolat ML, Vescovi AL, Calabresi P, Bezard E, Morelli M, Konradi C, Pasqualetti M, Usiello A
(2017) PLoS One 12: e0181677
MeSH Terms: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Aged, Aged, 80 and over, Animals, Bipolar Disorder, Brain Chemistry, Case-Control Studies, Female, GTP-Binding Proteins, Humans, Macaca mulatta, Male, Middle Aged, Parkinson Disease, Putamen, RNA, Messenger, Schizophrenia
Show Abstract · Added March 14, 2018
In rodent and human brains, the small GTP-binding protein Rhes is highly expressed in virtually all dopaminoceptive striatal GABAergic medium spiny neurons, as well as in large aspiny cholinergic interneurons, where it is thought to modulate dopamine-dependent signaling. Consistent with this knowledge, and considering that dopaminergic neurotransmission is altered in neurological and psychiatric disorders, here we sought to investigate whether Rhes mRNA expression is altered in brain regions of patients with Parkinson's disease (PD), Schizophrenia (SCZ), and Bipolar Disorder (BD), when compared to healthy controls (about 200 post-mortem samples). Moreover, we performed the same analysis in the putamen of non-human primate Macaca Mulatta, lesioned with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Overall, our data indicated comparable Rhes mRNA levels in the brain of patients with SCZ and BD, and their respective healthy controls. In sharp contrast, the putamen of patients suffering from PD showed a significant 35% reduction of this transcript, compared to healthy subjects. Interestingly, in line with observations obtained in humans, we found 27% decrease in Rhes mRNA levels in the putamen of MPTP-treated primates. Based on the established inhibitory influence of Rhes on dopamine-related responses, we hypothesize that its striatal downregulation in PD patients and animal models of PD might represent an adaptive event of the dopaminergic system to functionally counteract the reduced nigrostriatal innervation.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Assignment of the molecular origins of CEST signals at 2 ppm in rat brain.
Zhang XY, Xie J, Wang F, Lin EC, Xu J, Gochberg DF, Gore JC, Zu Z
(2017) Magn Reson Med 78: 881-887
MeSH Terms: Animals, Brain, Brain Chemistry, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Molecular Imaging, Proteins, Rats
Show Abstract · Added July 3, 2017
PURPOSE - Chemical exchange saturation transfer effects at 2 ppm (CEST@2ppm) in brain have previously been interpreted as originating from creatine. However, protein guanidino amine protons may also contribute to CEST@2ppm. This study aims to investigate the molecular origins and specificity of CEST@2ppm in brain.
METHODS - Two experiments were performed: (i) samples containing egg white albumin and creatine were dialyzed using a semipermeable membrane to demonstrate that proteins and creatine can be separated by this method; and (ii) tissue homogenates of rat brain with and without dialysis to remove creatine were studied to measure the relative contributions of proteins and creatine to CEST@2ppm.
RESULTS - The experiments indicate that dialysis can successfully remove creatine from proteins. Measurements on tissue homogenates show that, with the removal of creatine via dialysis, CEST@2ppm decreases to approximately 34% of its value before dialysis, which indicates that proteins and creatine have comparable contribution to the CEST@2ppm in brain. However, considering the contribution from peptides and amino acids to CEST@2ppm, creatine may have much less contribution to CEST@2ppm.
CONCLUSIONS - The contribution of proteins, peptides, and amino acids to CEST@2ppm cannot be neglected. The CEST@2ppm measurements of creatine in rat brain should be interpreted with caution. Magn Reson Med 78:881-887, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
© 2017 International Society for Magnetic Resonance in Medicine.
0 Communities
3 Members
0 Resources
8 MeSH Terms
Trypsin and MALDI matrix pre-coated targets simplify sample preparation for mapping proteomic distributions within biological tissues by imaging mass spectrometry.
Zubair F, Laibinis PE, Swisher WG, Yang J, Spraggins JM, Norris JL, Caprioli RM
(2016) J Mass Spectrom 51: 1168-1179
MeSH Terms: Animals, Brain Chemistry, Molecular Imaging, Peptide Fragments, Peptide Mapping, Proteomics, Rats, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Trypsin
Show Abstract · Added March 10, 2017
Prefabricated surfaces containing α-cyano-4-hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α-cyano-4-hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography-tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine-rich C-kinase substrate (29.8 kDa) and spectrin alpha chain, non-erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre-coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
1 Communities
3 Members
0 Resources
9 MeSH Terms
Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation.
Liu Q, Sanai N, Jin WN, La Cava A, Van Kaer L, Shi FD
(2016) Nat Neurosci 19: 243-52
MeSH Terms: Aged, Aged, 80 and over, Animals, Brain, Brain Chemistry, Cell Proliferation, Cerebral Ventricles, Cytokines, Encephalitis, Encephalomyelitis, Autoimmune, Experimental, Female, Humans, Immune Tolerance, Interleukin-15, Killer Cells, Natural, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Multiple Sclerosis, Neural Stem Cells, Recovery of Function
Show Abstract · Added March 28, 2016
Recovery from organ-specific autoimmune diseases largely relies on the mobilization of endogenous repair mechanisms and local factors that control them. Natural killer (NK) cells are swiftly mobilized to organs targeted by autoimmunity and typically undergo numerical contraction when inflammation wanes. We report the unexpected finding that NK cells are retained in the brain subventricular zone (SVZ) during the chronic phase of multiple sclerosis in humans and its animal model in mice. These NK cells were found preferentially in close proximity to SVZ neural stem cells (NSCs) that produce interleukin-15 and sustain functionally competent NK cells. Moreover, NK cells limited the reparative capacity of NSCs following brain inflammation. These findings reveal that reciprocal interactions between NSCs and NK cells regulate neurorepair.
0 Communities
1 Members
0 Resources
22 MeSH Terms
High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling.
Prentice BM, Chumbley CW, Caprioli RM
(2015) J Mass Spectrom 50: 703-10
MeSH Terms: Animals, Brain Chemistry, Histocytochemistry, Kidney, Lipids, Liver, Mice, Molecular Imaging, Pharmaceutical Preparations, Rats, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tandem Mass Spectrometry
Show Abstract · Added October 15, 2015
A matrix-assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high-speed precursor/fragment ion transition image acquisition. High-throughput analysis is facilitated by an Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/s), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and for a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8 to 14-fold increases in throughput compared with existing MS/MS instrumentation, an important advantage when imaging large areas on tissues.
Copyright © 2015 John Wiley & Sons, Ltd.
1 Communities
2 Members
0 Resources
12 MeSH Terms
MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data.
Spraggins JM, Rizzo DG, Moore JL, Rose KL, Hammer ND, Skaar EP, Caprioli RM
(2015) J Am Soc Mass Spectrom 26: 974-85
MeSH Terms: Amino Acid Sequence, Animals, Brain, Brain Chemistry, Female, Kidney, Leukocyte L1 Antigen Complex, Mice, Molecular Sequence Data, Optical Imaging, Proteins, Proteomics, Rats, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staphylococcal Infections, Staphylococcus aureus
Show Abstract · Added October 15, 2015
MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β(4) (m/z 4,963.502, 0.6ppm) and ATP synthase subunit ε (m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 (m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O(3) (m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.
1 Communities
3 Members
0 Resources
16 MeSH Terms
Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.
Truong ML, Harrington MG, Schepkin VD, Chekmenev EY
(2014) J Magn Reson 247: 88-95
MeSH Terms: Algorithms, Animals, Brain, Brain Chemistry, Brain Neoplasms, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Male, Migraine Disorders, Protons, Rats, Rats, Sprague-Dawley, Sodium, Sodium Isotopes, Software
Show Abstract · Added February 13, 2015
Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Organic salt NEDC (N-naphthylethylenediamine dihydrochloride) assisted laser desorption ionization mass spectrometry for identification of metal ions in real samples.
Hou J, Chen S, Zhang N, Liu H, Wang J, He Q, Wang J, Xiong S, Nie Z
(2014) Analyst 139: 3469-75
MeSH Terms: Adult, Animals, Brain Chemistry, Cations, Chlorides, Ethylenediamines, Female, Humans, Lakes, Metals, Mice, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Young Adult
Show Abstract · Added May 21, 2014
The significance of metals in life and their epidemiological effects necessitate the development of a direct, efficient, and rapid method of analysis. The matrix assisted laser desorption/ionization technique is on the horns of a dilemma of metal analysis as the conventional matrixes have high background in the low mass range. An organic salt, NEDC (N-naphthylethylenediamine dihydrochloride), is applied as a matrix for identification of metal ions in the negative ion mode in the present work. Sixteen metal ions, Ba(2+), Ca(2+), Cd(2+), Ce(3+), Co(2+), Cu(2+), Fe(3+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), Sn(2+) and Zn(2+), in the form of their chloride-adducted clusters were systematically tested. Mass spectra can provide unambiguous identification through accurate mass-to-charge ratios and characteristic isotope patterns. Compared to ruthenium ICP standard solution, tris(2,2'-bipyridyl)dichlororuthenium(ii) (C30H24N6Cl2Ru) can form organometallic chloride adducts to discriminate from the inorganic ruthenium by this method. After evaluating the sensitivity for Ca, Cu, Mg, Mn, Pb and Zn and plotting their quantitation curves of signal intensity versus concentration, we determined magnesium concentration in lake water quantitatively to be 5.42 mg L(-1) using the standard addition method. There is no significant difference from the result obtained with ICP-OES, 5.8 mg L(-1). Human urine and blood were also detected to ascertain the multi-metal analysis ability of this strategy in complex samples. At last, we explored its applicability to tissue slice and visualized sodium and potassium distribution by mass spectrometry imaging in the normal Kunming mouse brain.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Matrix pre-coated targets for high throughput MALDI imaging of proteins.
Yang J, Caprioli RM
(2014) J Mass Spectrom 49: 417-22
MeSH Terms: Animals, Brain Chemistry, Coumaric Acids, High-Throughput Screening Assays, Kidney, Mice, Molecular Imaging, Proteins, Rats, Reproducibility of Results, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added May 20, 2014
We have developed matrix pre-coated targets for imaging proteins in thin tissue sections by matrix-assisted laser desorption/ionization mass spectrometry. Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre-coated targets involves treatment with diisopropylethylamine (DIEA)-H2 O vapor, transforming the matrix layer to a viscous ionic liquid. This SA-DIEA ionic liquid layer extracts proteins and other analytes from tissue sections that are thaw mounted to this target. DIEA is removed by the immersion of the target into diluted acetic acid, allowing SA to co-crystallize with extracted analytes directly on the target. Ion images (3-70 kDa) of sections of mouse brain and rat kidney at spatial resolution down to 10 µm were obtained. Use of pre-coated slides greatly reduces sample preparation time for matrix-assisted laser desorption/ionization imaging while providing high throughput, low cost and high spatial resolution images.
Copyright © 2014 John Wiley & Sons, Ltd.
1 Communities
1 Members
0 Resources
11 MeSH Terms
The brain in flux: genetic, physiologic, and therapeutic perspectives on transporters in the CNS.
Blakely RD, Ortega A, Robinson MB
(2014) Neurochem Int 73: 1-3
MeSH Terms: Animals, Brain Chemistry, Brain Diseases, Carrier Proteins, Humans, Neurotransmitter Transport Proteins
Added February 12, 2015
0 Communities
1 Members
0 Resources
6 MeSH Terms