Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 113

Publication Record

Connections

Hallmarks of Bone Metastasis.
Johnson RW, Suva LJ
(2018) Calcif Tissue Int 102: 141-151
MeSH Terms: Animals, Bone Marrow Cells, Bone Neoplasms, Bone and Bones, Breast Neoplasms, Female, Humans, Mice, Osteoblasts, Osteoclasts, Osteolysis
Show Abstract · Added March 26, 2019
Breast cancer bone metastasis develops as the result of a series of complex interactions between tumor cells, bone marrow cells, and resident bone cells. The net effect of these interactions are the disruption of normal bone homeostasis, often with significantly increased osteoclast and osteoblast activity, which has provided a rational target for controlling tumor progression, with little or no emphasis on tumor eradication. Indeed, the clinical course of metastatic breast cancer is relatively long, with patients likely to experience sequential skeletal-related events (SREs), often over lengthy periods of time, even up to decades. These SREs include bone pain, fractures, and spinal cord compression, all of which may profoundly impair a patient's quality-of-life. Our understanding of the contributions of the host bone and bone marrow cells to the control of tumor progression has grown over the years, yet the focus of virtually all available treatments remains on the control of resident bone cells, primarily osteoclasts. In this perspective, our focus is to move away from the current emphasis on the control of bone cells and focus our attention on the hallmarks of bone metastatic tumor cells and how these differ from primary tumor cells and normal host cells. In our opinion, there remains a largely unmet medical need to develop and utilize therapies that impede metastatic tumor cells while sparing normal host bone and bone marrow cells. This perspective examines the impact of metastatic tumor cells on the bone microenvironment and proposes potential new directions for uncovering the important mechanisms driving metastatic progression in bone based on the hallmarks of bone metastasis.
0 Communities
1 Members
0 Resources
MeSH Terms
Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice.
Filgueiras LR, Brandt SL, Ramalho TR, Jancar S, Serezani CH
(2017) J Diabetes Complications 31: 334-339
MeSH Terms: Acetylation, Animals, Bone Marrow Cells, Cells, Cultured, Diabetes Mellitus, Type 1, Enzyme Inhibitors, Epigenesis, Genetic, Gene Expression Regulation, Glucose, Histone Acetyltransferases, Histone Deacetylases, Histones, Macrophages, Macrophages, Peritoneal, Male, Mice, Inbred C57BL, Myeloid Differentiation Factor 88, Osmolar Concentration, Promoter Regions, Genetic, Protein Processing, Post-Translational, STAT1 Transcription Factor, Streptozocin
Show Abstract · Added May 4, 2017
AIMS - To investigate the hypothesis that alteration in histone acetylation/deacetylation triggers aberrant STAT1/MyD88 expression in macrophages from diabetics. Increased STAT1/MyD88 expression is correlated with sterile inflammation in type 1 diabetic (T1D) mice.
METHODS - To induce diabetes, we injected low-doses of streptozotocin in C57BL/6 mice. Peritoneal or bone marrow-differentiated macrophages were cultured in 5mM (low) or 25mM (high glucose). ChIP analysis of macrophages from nondiabetic or diabetic mice was performed to determine acetylation of lysine 9 in histone H3 in MyD88 and STAT1 promoter regions. Macrophages from diabetic mice were treated with the histone acetyltransferase inhibitor anacardic acid (AA), followed by determination of mRNA expression by qPCR.
RESULTS - Increased STAT1 and MyD88 expression in macrophages from diabetic but not naive mice cultured in low glucose persisted for up to 6days. Macrophages from diabetic mice exhibited increased activity of histone acetyltransferases (HAT) and decreased histone deacetylases (HDAC) activity. We detected increased H3K9Ac binding to Stat1/Myd88 promoters in macrophages from T1D mice and AA in vitro treatment reduced STAT1 and MyD88 mRNA expression.
CONCLUSIONS/INTERPRETATION - These results indicate that histone acetylation drives elevated Stat1/Myd88 expression in macrophages from diabetic mice, and this mechanism may be involved in sterile inflammation and diabetes comorbidities.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Reply: Expanded Role for Bone Marrow-derived Hematopoietic Stem and Progenitor Cells in Pulmonary Arterial Hypertension.
Yan L, West J, Hamid R
(2016) Am J Respir Crit Care Med 194: 384-5
MeSH Terms: Bone Marrow, Bone Marrow Cells, Familial Primary Pulmonary Hypertension, Hematopoietic Stem Cells, Humans, Hypertension, Pulmonary, Stem Cells
Added April 2, 2019
0 Communities
1 Members
0 Resources
MeSH Terms
Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions.
Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE
(2016) Int J Nanomedicine 11: 2163-77
MeSH Terms: Animals, Bone Marrow Cells, Cell Line, Tumor, Chemokine CXCL9, Female, Glycosylation, Lipids, Macrophages, Mice, Knockout, Mice, Transgenic, NF-KappaB Inhibitor alpha, NF-kappa B, Nanomedicine, Nanoparticles, Neoplasms, Ovarian Neoplasms, RNA, Small Interfering, Signal Transduction, Tumor Necrosis Factor-alpha
Show Abstract · Added March 21, 2018
Tumor-associated macrophages (TAMs) are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential.
0 Communities
1 Members
0 Resources
19 MeSH Terms
The Bone Microenvironment: a Fertile Soil for Tumor Growth.
Buenrostro D, Mulcrone PL, Owens P, Sterling JA
(2016) Curr Osteoporos Rep 14: 151-8
MeSH Terms: B-Lymphocytes, Bone Marrow, Bone Marrow Cells, Bone Neoplasms, Bone and Bones, Cellular Microenvironment, Fibroblasts, Humans, Killer Cells, Natural, Macrophages, Myeloid-Derived Suppressor Cells, Osteoblasts, Osteoclasts, Osteocytes, T-Lymphocytes, Tumor Microenvironment
Show Abstract · Added April 26, 2017
Bone metastatic disease remains a significant and frequent problem for cancer patients that can lead to increased morbidity and mortality. Unfortunately, despite decades of research, bone metastases remain incurable. Current studies have demonstrated that many properties and cell types within the bone and bone marrow microenvironment contribute to tumor-induced bone disease. Furthermore, they have pointed to the importance of understanding how tumor cells interact with their microenvironment in order to help improve both the development of new therapeutics and the prediction of response to therapy.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Jnk1 Deficiency in Hematopoietic Cells Suppresses Macrophage Apoptosis and Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice.
Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF
(2016) Arterioscler Thromb Vasc Biol 36: 1122-31
MeSH Terms: Animals, Aorta, Aortic Diseases, Apoptosis, Atherosclerosis, Bone Marrow Cells, Bone Marrow Transplantation, Cell Survival, Cells, Cultured, Diet, High-Fat, Disease Models, Animal, Endoplasmic Reticulum Stress, Genetic Predisposition to Disease, Hypercholesterolemia, Macrophages, Mice, Inbred C57BL, Mice, Knockout, Mitogen-Activated Protein Kinase 8, Mitogen-Activated Protein Kinase 9, PTEN Phosphohydrolase, Phenotype, Plaque, Atherosclerotic, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Receptors, LDL, Signal Transduction, bcl-Associated Death Protein
Show Abstract · Added April 10, 2018
OBJECTIVE - The c-Jun NH2-terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis.
APPROACH AND RESULTS - To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr(-/-) mice were reconstituted with wild-type, Jnk1(-/-), and Jnk2(-/-) hematopoietic cells and fed a high cholesterol diet. Jnk1(-/-)→Ldlr(-/-) mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2(-/-) cells. Moreover, genetic ablation of JNK to a single allele (Jnk1(+/-)/Jnk2(-/-) or Jnk1(-/-)/Jnk2(+/-)) in marrow of Ldlr(-/-) recipients further increased atherosclerosis compared with Jnk1(-/-)→Ldlr(-/-) and wild-type→Ldlr(-/-) mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1(-/-) macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways.
CONCLUSIONS - Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone.
Johnson RW, McGregor NE, Brennan HJ, Crimeen-Irwin B, Poulton IJ, Martin TJ, Sims NA
(2015) Bone 81: 343-351
MeSH Terms: Animals, Bone Marrow, Bone Marrow Cells, Bone and Bones, Cartilage, Cathepsin K, Cytokine Receptor gp130, Female, Femur, Gene Deletion, Interleukin-6, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Osteoclasts, Osteogenesis, Real-Time Polymerase Chain Reaction, Receptors, Interleukin-11, Receptors, Interleukin-6, Sex Factors, Signal Transduction, X-Ray Microtomography
Show Abstract · Added March 26, 2019
Interleukin-6 (IL-6) and interleukin-11 (IL-11) receptors (IL-6R and IL-11R, respectively) are both expressed in osteoclasts and transduce signal via the glycoprotein130 (gp130) co-receptor, but the physiological role of this pathway is unclear. To determine the critical roles of gp130 signalling in the osteoclast, we generated mice using cathepsin K Cre (CtskCre) to disrupt gp130 signalling in osteoclasts. Bone marrow macrophages from CtskCre.gp130(f/f) mice generated more osteoclasts in vitro than cells from CtskCre.gp130(w/w) mice; these osteoclasts were also larger and had more nuclei than controls. While no increase in osteoclast numbers was observed in vivo, osteoclasts on trabecular bone surfaces of CtskCre.gp130(f/f) mice were more spread out than in control mice, but had no functional defect detectable by serum CTX1 levels or trabecular bone cartilage remnants. However, trabecular osteoblast number and mineralising surfaces were significantly lower in male CtskCre.gp130(f/f) mice compared to controls, and this was associated with a significantly lower trabecular bone volume at 12 weeks of age. Furthermore, CtskCre.gp130(f/f) mice exhibited greatly suppressed periosteal bone formation at this age, indicated by significant reductions in both double-labelled surface and mineral apposition rate. By 26 weeks of age, CtskCre.gp130(f/f) mice exhibited narrower femora, with lower periosteal and endocortical perimeters than CtskCre.gp130(w/w) controls. Since IL-6 and IL-11R global knockout mice exhibited a similar reduction in femoral width, we also assessed periosteal bone formation in those strains, and found bone forming surfaces were also reduced in male IL-6 null mice. These data suggest that IL-6/gp130 signalling in the osteoclast is not essential for normal bone resorption in vivo, but maintains both trabecular and periosteal bone formation in male mice by promoting osteoblast activity through the stimulation of osteoclast-derived "coupling factors" and "osteotransmitters", respectively.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Histone Deacetylase 3 Is Required for T Cell Maturation.
Hsu FC, Belmonte PJ, Constans MM, Chen MW, McWilliams DC, Hiebert SW, Shapiro VS
(2015) J Immunol 195: 1578-90
MeSH Terms: Animals, Bone Marrow Cells, Cell Differentiation, Cell Movement, Complement Activation, Complement System Proteins, Histone Deacetylases, Homeostasis, Interleukin-7, Lymphocyte Count, Mice, Mice, Knockout, Mice, Transgenic, T-Lymphocyte Subsets, T-Lymphocytes, Thymus Gland, Tumor Necrosis Factors
Show Abstract · Added September 28, 2015
Recent thymic emigrants are newly generated T cells that need to undergo postthymic maturation to gain functional competency and enter the long-lived naive T cell pool. The mechanism of T cell maturation remains incompletely understood. Previously, we demonstrated that the transcriptional repressor NKAP is required for T cell maturation. Because NKAP associates with histone deacetylase 3 (HDAC3), we examined whether HDAC3 is also required for T cell maturation. Although thymic populations are similar in CD4-cre HDAC3 conditional knockout mice compared with wild-type mice, the peripheral numbers of CD4(+) and CD8(+) T cells are dramatically decreased. In the periphery, the majority of HDAC3-deficient naive T cells are recent thymic emigrants, indicating a block in T cell maturation. CD55 upregulation during T cell maturation is substantially decreased in HDAC3-deficient T cells. Consistent with a block in functional maturation, HDAC3-deficient peripheral T cells have a defect in TNF licensing after TCR/CD28 stimulation. CD4-cre HDAC3 conditional knockout mice do not have a defect in intrathymic migration, thymic egress, T cell survival, or homeostasis. In the periphery, similar to immature NKAP-deficient peripheral T cells, HDAC3-deficient peripheral T cells were bound by IgM and complement proteins, leading to the elimination of these cells. In addition, HDAC3-deficient T cells display decreases in the sialic acid modifications on the cell surface that recruit natural IgM to initiate the classical complement pathway. Therefore, HDAC3 is required for T cell maturation.
Copyright © 2015 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Neonatal CD71+ Erythroid Cells Do Not Modify Murine Sepsis Mortality.
Wynn JL, Scumpia PO, Stocks BT, Romano-Keeler J, Alrifai MW, Liu JH, Kim AS, Alford CE, Matta P, Weitkamp JH, Moore DJ
(2015) J Immunol 195: 1064-70
MeSH Terms: Adoptive Transfer, Animals, Antibodies, Antigens, CD, Bone Marrow Cells, CD11b Antigen, Endotoxins, Erythroid Cells, Female, Fetal Blood, Humans, Male, Mice, Mice, Inbred C57BL, Receptors, Transferrin, Reticulocytes, Sepsis, Spleen
Show Abstract · Added June 24, 2015
Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested that murine neonatal host defense against infection could be compromised by immunosuppressive CD71(+) erythroid splenocytes. We examined the impact of CD71(+) erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71(+) erythroid (CD235a(+)) cells in human neonates. Adoptive transfer or an Ab-mediated reduction in neonatal CD71(+) erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b(+) cells was not limited to neonatal splenocytes; it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 Ab showed reduced splenic bacterial load following bacterial challenge compared with isotype-treated mice. However, adoptive transfer of enriched CD71(+) erythroid splenocytes to CD71(+)-reduced animals did not reduce bacterial clearance. Human CD71(+)CD235a(+) cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71(+) erythroid splenocytes under these experimental conditions suggests that the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 Ab treatment, rather than a reduction in immunosuppressive CD71(+) erythroid splenocytes, was likely responsible for the reported enhanced bacterial clearance. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests that they may have a limited role in reducing inflammation secondary to microbial colonization.
Copyright © 2015 by The American Association of Immunologists, Inc.
0 Communities
3 Members
0 Resources
18 MeSH Terms
CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow.
Beck TC, Gomes AC, Cyster JG, Pereira JP
(2014) J Exp Med 211: 2567-81
MeSH Terms: Animals, B-Lymphocytes, Bone Marrow Cells, Cell Differentiation, Cell Lineage, Cell Movement, Cell Shape, Down-Regulation, Integrin alpha4beta1, Mice, Inbred C57BL, Receptors, Antigen, B-Cell, Receptors, CXCR4, Signal Transduction, Vascular Cell Adhesion Molecule-1
Show Abstract · Added January 11, 2016
Leukocyte residence in lymphoid organs is controlled by a balance between retention and egress-promoting chemoattractants sensed by pertussis toxin (PTX)-sensitive Gαi protein-coupled receptors (GPCRs). Here, we use two-photon intravital microscopy to show that immature B cell retention within bone marrow (BM) was strictly dependent on amoeboid motility mediated by CXCR4 and CXCL12 and by α4β1 integrin-mediated adhesion to VCAM-1. However, B lineage cell egress from BM is independent of PTX-sensitive GPCR signaling. B lineage cells expressing PTX rapidly exited BM even though their motility within BM parenchyma was significantly reduced. Our experiments reveal that when immature B cells are near BM sinusoids their motility is reduced, their morphology is predominantly rounded, and cells reverse transmigrate across sinusoidal endothelium in a largely nonamoeboid manner. Immature B cell egress from BM was dependent on a twofold CXCR4 down-regulation that was antagonized by antigen-induced BCR signaling. This passive mode of cell egress from BM also contributes significantly to the export of other hematopoietic cells, including granulocytes, monocytes, and NK cells, and is reminiscent of erythrocyte egress.
© 2014 Beck et al.
0 Communities
1 Members
0 Resources
14 MeSH Terms