The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.
If you have any questions or comments, please contact us.
BACKGROUND AND OBJECTIVES - Impacts of mindfulness-based programs on blood pressure remain equivocal, possibly because the programs are not adapted to engage with determinants of hypertension, or due to floor effects. Primary objectives were to create a customized Mindfulness-Based Blood Pressure Reduction (MB-BP) program, and to evaluate acceptability, feasibility, and effects on hypothesized proximal self-regulation mechanisms. Secondary outcomes included modifiable determinants of blood pressure (BP), and clinic-assessed systolic blood pressure (SBP).
METHODS - This was a Stage 1 single-arm trial with one year follow-up. Focus groups and in-depth interviews were performed to evaluate acceptability and feasibility. Self-regulation outcomes, and determinants of BP, were assessed using validated questionnaires or objective assessments. The MB-BP curriculum was adapted from Mindfulness-Based Stress Reduction to direct participants' mindfulness skills towards modifiable determinants of blood pressure.
RESULTS - Acceptability and feasibility findings showed that of 53 eligible participants, 48 enrolled (91%). Of these, 43 (90%) attended at least 7 of the 10 MB-BP classes; 43 were followed to one year (90%). Focus groups (n = 19) and semi-structured interviews (n = 10) showed all participants viewed the delivery modality favorably, and identified logistic considerations concerning program access as barriers. A priori selected primary self-regulation outcomes showed improvements at one-year follow-up vs. baseline, including attention control (Sustained Attention to Response Task correct no-go score, p<0.001), emotion regulation (Difficulties in Emotion Regulation Score, p = 0.02), and self-awareness (Multidimensional Assessment of Interoceptive Awareness, p<0.001). Several determinants of hypertension were improved in participants not adhering to American Heart Association guidelines at baseline, including physical activity (p = 0.02), Dietary Approaches to Stop Hypertension-consistent diet (p<0.001), and alcohol consumption (p<0.001). Findings demonstrated mean 6.1 mmHg reduction in SBP (p = 0.008) at one year follow-up; effects were most pronounced in Stage 2 uncontrolled hypertensives (SBP≥140 mmHg), showing 15.1 mmHg reduction (p<0.001).
CONCLUSION - MB-BP has good acceptability and feasibility, and may engage with self-regulation and behavioral determinants of hypertension.
We recently reported a linear association between higher systolic blood pressure (SBP) and risk of mortality in hemodialysis patients when SBP is measured outside of the dialysis unit (out-of-dialysis-unit-SBP), despite there being a U-shaped association between SBP measured at the dialysis unit (dialysis-unit-SBP) with risk of mortality. Here, we explored the relationship between SBP with cardiovascular events, which has important treatment implications but has not been well elucidated. Among 383 hemodialysis participants enrolled in the prospective CRIC study (Chronic Renal Insufficiency Cohort), multivariable splines and Cox models were used to study the association between SBP and adjudicated cardiovascular events (heart failure, myocardial infarction, ischemic stroke, and peripheral artery disease), controlling for differences in demographics, cardiovascular disease risk factors, and dialysis parameters. Dialysis-unit-SBP and out-of-dialysis-unit-SBP were modestly correlated (=0.34; <0.001). We noted a U-shaped association of dialysis-unit-SBP and risk of cardiovascular events, with the nadir risk between 140 and 170 mm Hg. In contrast, there was a linear stepwise association between out-of-dialysis-unit-SBP with risk of cardiovascular events. Participants with out-of-dialysis-unit-SBP ≥128 mm Hg (top 2 quartiles) had >2-fold increased risk of cardiovascular events compared with those with out-of-dialysis-unit-SBP ≤112 mm Hg (3rd SBP quartile: adjusted hazard ratio, 2.08 [95% confidence interval, 1.12-3.87] and fourth SBP quartile: adjusted hazard ratio, 2.76 [95% confidence interval, 1.42-5.33]). In conclusion, among hemodialysis patients, although there is a U-shaped (paradoxical) association of dialysis-unit-SBP and risk of cardiovascular disease, there is a linear association of out-of-dialysis-unit-SBP with risk of cardiovascular disease. Out-of-dialysis-unit blood pressure provides key information and may be an important therapeutic target.
© 2017 American Heart Association, Inc.
Elevated blood pressure (BP) is common in the emergency department (ED), but the relationship between antihypertensive medication adherence and BP in the ED is unclear. This cross-sectional study tested the hypothesis that higher antihypertensive adherence is associated with lower systolic BP (SBP) in the ED among adults with hypertension who sought ED care at an academic hospital from July 2012 to April 2013. Biochemical assessment of antihypertensive adherence was performed using a mass spectrometry blood assay, and the primary outcome was average ED SBP. Analyses were stratified by number of prescribed antihypertensives (<3, ≥3) and adjusted for age, sex, race, insurance, literacy, numeracy, education, body mass index, and comorbidities. Among 85 patients prescribed ≥3 antihypertensives, mean SBP for adherent patients was 134.4 mm Hg (±26.1 mm Hg), and in adjusted analysis was -20.8 mm Hg (95% confidence interval, -34.2 to -7.4 mm Hg; =0.003) different from nonadherent patients. Among 176 patients prescribed <3 antihypertensives, mean SBP was 135.5 mm Hg (±20.6 mm Hg) for adherent patients, with no difference by adherence in adjusted analysis (+2.9 mm Hg; 95% confidence interval, -4.7 to 10.5 mm Hg; =0.45). Antihypertensive nonadherence identified by biochemical assessment was common and associated with higher SBP in the ED among patients who had a primary care provider and health insurance and who were prescribed ≥3 antihypertensives. Biochemical assessment of antihypertensives could help distinguish medication nonadherence from other contributors to elevated BP and identify target populations for intervention.
© 2017 American Heart Association, Inc.
Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30© 2016 American Heart Association, Inc.
OBJECTIVE - Phenotyping algorithms applied to electronic health record (EHR) data enable investigators to identify large cohorts for clinical and genomic research. Algorithm development is often iterative, depends on fallible investigator intuition, and is time- and labor-intensive. We developed and evaluated 4 types of phenotyping algorithms and categories of EHR information to identify hypertensive individuals and controls and provide a portable module for implementation at other sites.
MATERIALS AND METHODS - We reviewed the EHRs of 631 individuals followed at Vanderbilt for hypertension status. We developed features and phenotyping algorithms of increasing complexity. Input categories included International Classification of Diseases, Ninth Revision (ICD9) codes, medications, vital signs, narrative-text search results, and Unified Medical Language System (UMLS) concepts extracted using natural language processing (NLP). We developed a module and tested portability by replicating 10 of the best-performing algorithms at the Marshfield Clinic.
RESULTS - Random forests using billing codes, medications, vitals, and concepts had the best performance with a median area under the receiver operator characteristic curve (AUC) of 0.976. Normalized sums of all 4 categories also performed well (0.959 AUC). The best non-NLP algorithm combined normalized ICD9 codes, medications, and blood pressure readings with a median AUC of 0.948. Blood pressure cutoffs or ICD9 code counts alone had AUCs of 0.854 and 0.908, respectively. Marshfield Clinic results were similar.
CONCLUSION - This work shows that billing codes or blood pressure readings alone yield good hypertension classification performance. However, even simple combinations of input categories improve performance. The most complex algorithms classified hypertension with excellent recall and precision.
© The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
UNLABELLED - Splanchnic venous pooling is a major hemodynamic determinant of orthostatic hypotension, but is not specifically targeted by pressor agents, the mainstay of treatment. We developed an automated inflatable abdominal binder that provides sustained servo-controlled venous compression (40 mm Hg) and can be activated only on standing. We tested the efficacy of this device against placebo and compared it to midodrine in 19 autonomic failure patients randomized to receive either placebo, midodrine (2.5-10 mg), or placebo combined with binder on separate days in a single-blind, crossover study. Systolic blood pressure (SBP) was measured seated and standing before and 1-hour post medication; the binder was inflated immediately before standing. Only midodrine increased seated SBP (31±5 versus 9±4 placebo and 7±5 binder, P=0.003), whereas orthostatic tolerance (defined as area under the curve of upright SBP [AUCSBP]) improved similarly with binder and midodrine (AUCSBP, 195±35 and 197±41 versus 19±38 mm Hg×minute for placebo; P=0.003). Orthostatic symptom burden decreased with the binder (from 21.9±3.6 to 16.3±3.1, P=0.032) and midodrine (from 25.6±3.4 to 14.2±3.3, P<0.001), but not with placebo (from 19.6±3.5 to 20.1±3.3, P=0.756). We also compared the combination of midodrine and binder with midodrine alone. The combination produced a greater increase in orthostatic tolerance (AUCSBP, 326±65 versus 140±53 mm Hg×minute for midodrine alone; P=0.028, n=21) and decreased orthostatic symptoms (from 21.8±3.2 to 12.9±2.9, P<0.001). In conclusion, servo-controlled abdominal venous compression with an automated inflatable binder is as effective as midodrine, the standard of care, in the management of orthostatic hypotension. Combining both therapies produces greater improvement in orthostatic tolerance.
CLINICAL TRIAL REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT00223691.
© 2016 American Heart Association, Inc.
Angiotensin II-induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A(-/-) mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current study, we performed renal transporter profiling in mice deficient in IL-17A or the related isoform, IL-17F, after 4 weeks of Ang II infusion, the time when the blood pressure reduction in IL-17A(-/-) mice is most prominent. Deficiency of IL-17A abolished the activation of distal tubule transporters, specifically the sodium-chloride cotransporter and the epithelial sodium channel and protected mice from glomerular and tubular injury. In human proximal tubule (HK-2) cells, IL-17A increased sodium hydrogen exchanger 3 expression through a serum and glucocorticoid-regulated kinase 1-dependent pathway. In mouse distal convoluted tubule cells, IL-17A increased sodium-chloride cotransporter activity in a serum and glucocorticoid-regulated kinase 1/Nedd4-2-dependent pathway. In both cell types, acute treatment with IL-17A induced phosphorylation of serum and glucocorticoid-regulated kinase 1 at serine 78, and treatment with a serum and glucocorticoid-regulated kinase 1 inhibitor blocked the effects of IL-17A on sodium hydrogen exchanger 3 and sodium-chloride cotransporter. Interestingly, both HK-2 and mouse distal convoluted tubule 15 cells produce endogenous IL-17A. IL17F had little or no effect on blood pressure or renal sodium transporter abundance. These studies provide a mechanistic link by which IL-17A modulates renal sodium transport and suggest that IL-17A inhibition may improve renal function in hypertension and other autoimmune disorders.
© 2016 American Heart Association, Inc.
Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.
© 2016 American Heart Association, Inc.