Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 617

Publication Record

Connections

Associations of Thigh and Abdominal Adipose Tissue Radiodensity with Glucose and Insulin in Nondiabetic African-Ancestry Men.
Tilves C, Zmuda JM, Kuipers AL, Carr JJ, Terry JG, Wheeler V, Peddada SD, Nair S, Miljkovic I
(2020) Obesity (Silver Spring) 28: 404-411
MeSH Terms: Adipose Tissue, Adiposity, Adult, African Continental Ancestry Group, Aged, Blood Glucose, Body Composition, Cross-Sectional Studies, Glucose, Humans, Insulin, Intra-Abdominal Fat, Male, Middle Aged, Obesity, Overweight, Subcutaneous Fat, Thigh, West Indies
Show Abstract · Added January 10, 2020
OBJECTIVE - Decreased radiodensity of adipose tissue (AT) located in the visceral AT (VAT), subcutaneous AT (SAT), and intermuscular AT (IMAT) abdominal depots is associated with hyperglycemia, hyperinsulinemia, and insulin resistance independent of AT volumes. These associations were sought in African-ancestry men, who have higher risk for type 2 diabetes and have been underrepresented in previous studies.
METHODS - This cross-sectional analysis included 505 nondiabetic men of African-Caribbean ancestry (median age: 61 years; median BMI: 26.8 kg/m ) from the Tobago Health Study. AT volumes and radiodensities were assessed using computed tomography, including abdominal (VAT and SAT) and thigh (IMAT) depots. Associations between AT radiodensities were assessed with fasting serum glucose and insulin and with insulin resistance (updated homeostatic model assessment of insulin resistance, HOMA2-IR).
RESULTS - Higher radiodensity in any AT depot was associated with lower log-insulin and log-HOMA2-IR (β range: -0.16 to -0.18 for each; all P < 0.0001). No AT radiodensity was associated with glucose. Thigh IMAT radiodensity associations were independent of, and similar in magnitude to, VAT radiodensities. Model fit statistics suggested that AT radiodensities were a better predictor for insulin and insulin resistance compared with AT volumes in individuals with overweight and obesity.
CONCLUSIONS - AT radiodensities at multiple depots are significantly associated with insulin and insulin resistance in African-ancestry men.
© 2019 The Obesity Society.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Roux-en-Y gastric bypass surgery improves hepatic glucose metabolism and reduces plasma kisspeptin levels in morbidly obese patients with type 2 diabetes.
Flynn CR, Albaugh VL, Tamboli RA, Gregory JM, Bosompem A, Sidani RM, Winnick JJ
(2020) Am J Physiol Gastrointest Liver Physiol 318: G370-G374
MeSH Terms: Adolescent, Adult, Anastomosis, Roux-en-Y, Blood Glucose, Diabetes Mellitus, Type 2, Female, Glucagon, Glucose, Humans, Insulin, Kisspeptins, Liver, Male, Middle Aged, Obesity, Morbid, Treatment Outcome, Young Adult
Show Abstract · Added November 12, 2019
Roux-en-Y gastric bypass surgery (RYGB) is known to improve whole-body glucose metabolism in patients with type 2 diabetes (T2D), although the mechanisms are not entirely clear and are likely multifactorial. The aim of this study was to assess fasting hepatic glucose metabolism and other markers of metabolic activity before and after RYGB in patients with and without T2D. Methods: Metabolic characteristics of patients who are obese with T2D were compared with those without the disease (non-T2D) before and 1 and 6 mo after RYGB. Fasting plasma insulin and the insulin:glucagon ratio were markedly reduced as early as 1 mo after RYGB in both patients with T2D and without T2D. Despite this reduction, endogenous glucose production and fasting plasma glucose levels were lower in both groups after RYGB, with the reductions being much larger in T2D. Plasma kisspeptin, an inhibitor of insulin secretion, was reduced only in T2D after surgery. Improved hepatic glucose metabolism and lower plasma kisspeptin in T2D after RYGB may link improved hepatic function with enhanced insulin responsiveness after surgery. Our manuscript is the first, to the best of our knowledge, to present data showing that Roux-en-Y gastric bypass surgery (RYGB) lowers fasting kisspeptin levels in patients who are obese with type 2 diabetes. This lowering of kisspeptin is important because it could link improvements in liver glucose metabolism after RYGB with increased insulin responsiveness also seen after surgery.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Impact of Acipimox Therapy on Free Fatty Acid Efflux and Endothelial Function in the Metabolic Syndrome: A Randomized Trial.
Aday AW, Goldfine AB, Gregory JM, Beckman JA
(2019) Obesity (Silver Spring) 27: 1812-1819
MeSH Terms: Adult, Aged, Blood Glucose, Cross-Over Studies, Double-Blind Method, Endothelium, Vascular, Fatty Acids, Nonesterified, Female, Humans, Hypolipidemic Agents, Insulin, Insulin Resistance, Lipid Metabolism, Male, Metabolic Syndrome, Middle Aged, Pyrazines, Vasodilation
Show Abstract · Added October 2, 2019
OBJECTIVE - Insulin resistance is associated with increased lipolysis and elevated concentrations of free fatty acids (FFA), which in turn contribute to impaired vascular function. It was hypothesized that lowering FFA with acipimox, a nicotinic acid derivative that impairs FFA efflux, would improve endothelial function, measured by flow-mediated dilation (FMD), in individuals with metabolic syndrome.
METHODS - A total of 18 participants with metabolic syndrome and 17 healthy controls were enrolled and treated with acipimox 250 mg orally every 6 hours or placebo for 7 days in a randomized, double-blind, crossover trial.
RESULTS - Acipimox reduced FFA concentrations among individuals with metabolic syndrome to near normal levels (P = 0.01), but there was no change among healthy controls (P = 0.17). Acipimox did not improve endothelial-dependent FMD in either group (metabolic syndrome: P = 0.42; healthy controls: P = 0.16), although endothelial-independent nitroglycerin-mediated dilation among those with metabolic syndrome tended to increase (20.3%, P = 0.06). There were no changes in blood lipids or markers of inflammation following therapy. There was minimal correlation between change in FMD and baseline measures of BMI ( ρ = -0.09) or waist circumference ( ρ = -0.15).
CONCLUSIONS - In groups with normal or elevated baseline FFA, short-term reductions do not improve endothelial function assessed by FMD.
© 2019 The Obesity Society.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Fibrotic Encapsulation Is the Dominant Source of Continuous Glucose Monitor Delays.
McClatchey PM, McClain ES, Williams IM, Malabanan CM, James FD, Lord PC, Gregory JM, Cliffel DE, Wasserman DH
(2019) Diabetes 68: 1892-1901
MeSH Terms: Animals, Blood Glucose, Blood Glucose Self-Monitoring, Equipment Failure, Fibrosis, Mice, Subcutaneous Fat
Show Abstract · Added August 11, 2019
Continuous glucose monitor (CGM) readings are delayed relative to blood glucose, and this delay is usually attributed to the latency of interstitial glucose levels. However, CGM-independent data suggest rapid equilibration of interstitial glucose. This study sought to determine the loci of CGM delays. Electrical current was measured directly from CGM electrodes to define sensor kinetics in the absence of smoothing algorithms. CGMs were implanted in mice, and sensor versus blood glucose responses were measured after an intravenous glucose challenge. Dispersion of a fluorescent glucose analog (2-NBDG) into the CGM microenvironment was observed in vivo using intravital microscopy. Tissue deposited on the sensor and nonimplanted subcutaneous adipose tissue was then collected for histological analysis. The time to half-maximum CGM response in vitro was 35 ± 2 s. In vivo, CGMs took 24 ± 7 min to reach maximum current versus 2 ± 1 min to maximum blood glucose ( = 0.0017). 2-NBDG took 21 ± 7 min to reach maximum fluorescence at the sensor versus 6 ± 6 min in adipose tissue ( = 0.0011). Collagen content was closely correlated with 2-NBDG latency ( = 0.96, = 0.0004). Diffusion of glucose into the tissue deposited on a CGM is substantially delayed relative to interstitial fluid. A CGM that resists fibrous encapsulation would better approximate real-time deviations in blood glucose.
© 2019 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
7 MeSH Terms
Peripherally delivered hepatopreferential insulin analog insulin-406 mimics the hypoglycaemia-sparing effect of portal vein human insulin infusion in dogs.
Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, Hastings JR, Madsen P, Kjeldsen TB, Hostrup S, Brand CL, Fledelius C, Nishimura E, Cherrington AD
(2019) Diabetes Obes Metab 21: 2294-2304
MeSH Terms: Animals, Blood Glucose, Diabetes Mellitus, Type 1, Dogs, Gluconeogenesis, Humans, Hypoglycemia, Hypoglycemic Agents, Infusions, Intravenous, Insulin, Insulin, Regular, Human, Liver, Male, Portal Vein
Show Abstract · Added June 26, 2019
AIMS - We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia.
MATERIALS AND METHODS - Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes.
RESULTS - Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUC during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both).
CONCLUSIONS - Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Medical and Psychological Considerations for Carbohydrate-Restricted Diets in Youth With Type 1 Diabetes.
Gallagher KAS, DeSalvo D, Gregory J, Hilliard ME
(2019) Curr Diab Rep 19: 27
MeSH Terms: Adolescent, Blood Glucose, Child, Depression, Diabetes Mellitus, Type 1, Diet, Carbohydrate-Restricted, Feeding and Eating Disorders, Humans
Show Abstract · Added June 26, 2019
PURPOSE OF REVIEW - Given the challenges achieving recommended glycemic targets in youth with type 1 diabetes (T1D), providers may consider recommending carbohydrate-restricted diets (CRDs) to optimize glycemic control. The goal of the present review is to describe relevant literature on the potential medical and psychosocial benefits and risks of CRDs in youth with T1D.
RECENT FINDINGS - Limited data exist on the effects of CRDs in pediatric populations. Findings from studies with youth and adults are mixed; some indicate that CRDs may be associated with desirable medical outcomes, such as improved glycemic control and reduced HbA1c, which may contribute to positive psychological outcomes such as reduced diabetes distress and depressive symptoms. Others suggest that CRDs may also be associated with detrimental outcomes, including mineral deficiencies and suboptimal growth, and dietary restriction has been linked to greater diabetes distress, disordered eating, and diabetes management. More research is needed to evaluate benefits and risks of CRDs in youth. Providers should exercise caution when discussing CRDs with youth and families, particularly when considering CRDs for youth at elevated risk for eating disordered behavior.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Energy metabolism couples hepatocyte integrin-linked kinase to liver glucoregulation and postabsorptive responses of mice in an age-dependent manner.
Trefts E, Hughey CC, Lantier L, Lark DS, Boyd KL, Pozzi A, Zent R, Wasserman DH
(2019) Am J Physiol Endocrinol Metab 316: E1118-E1135
MeSH Terms: Age Factors, Animals, Blood Glucose, Cell Differentiation, Cell Respiration, Energy Metabolism, Gene Knockout Techniques, Glucose, Glucose Tolerance Test, Hepatocytes, Homeostasis, Inflammation, Insulin, Insulin Resistance, Liver, Liver Cirrhosis, Mice, Obesity, Protein-Serine-Threonine Kinases
Show Abstract · Added March 26, 2019
Integrin-linked kinase (ILK) is a critical intracellular signaling node for integrin receptors. Its role in liver development is complex, as ILK deletion at E10.5 (before hepatocyte differentiation) results in biochemical and morphological differences that resolve as mice age. Nevertheless, mice with ILK depleted specifically in hepatocytes are protected from the hepatic insulin resistance during obesity. Despite the potential importance of hepatocyte ILK to metabolic health, it is unknown how ILK controls hepatic metabolism or glucoregulation. The present study tested the role of ILK in hepatic metabolism and glucoregulation by deleting it specifically in hepatocytes, using a cre-lox system that begins expression at E15.5 (after initiation of hepatocyte differentiation). These mice develop the most severe morphological and glucoregulatory abnormalities at 6 wk, but these gradually resolve with age. After identifying when the deletion of ILK caused a severe metabolic phenotype, in depth studies were performed at this time point to define the metabolic programs that coordinate control of glucoregulation that are regulated by ILK. We show that 6-wk-old ILK-deficient mice have higher glucose tolerance and decreased net glycogen synthesis. Additionally, ILK was shown to be necessary for transcription of mitochondrial-related genes, oxidative metabolism, and maintenance of cellular energy status. Thus, ILK is required for maintaining hepatic transcriptional and metabolic programs that sustain oxidative metabolism, which are required for hepatic maintenance of glucose homeostasis.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery.
Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR
(2019) Gastroenterology 156: 1041-1051.e4
MeSH Terms: Anastomosis, Surgical, Animals, Anticholesteremic Agents, Bariatric Surgery, Bile Acids and Salts, Blood Glucose, Cholestyramine Resin, Diet, High-Fat, Gallbladder, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Glucose Tolerance Test, Ileum, Insulin Resistance, Intestines, Lymph, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptors, Cytoplasmic and Nuclear, Receptors, G-Protein-Coupled, Signal Transduction, Verrucomicrobia, Weight Loss
Show Abstract · Added January 4, 2019
BACKGROUND & AIMS - Bile diversion to the ileum (GB-IL) has strikingly similar metabolic and satiating effects to Roux-en-Y gastric bypass (RYGB) in rodent obesity models. The metabolic benefits of these procedures are thought to be mediated by increased bile acids, although parallel changes in body weight and other confounding variables limit this interpretation.
METHODS - Global G protein-coupled bile acid receptor-1 null (Tgr5) and intestinal-specific farnesoid X receptor null (Fxr) mice on high-fat diet as well as wild-type C57BL/6 and glucagon-like polypeptide 1 receptor deficient (Glp-1r) mice on chow diet were characterized following GB-IL.
RESULTS - GB-IL induced weight loss and improved oral glucose tolerance in Tgr5, but not Fxr mice fed a high-fat diet, suggesting a role for intestinal Fxr. GB-IL in wild-type, chow-fed mice prompted weight-independent improvements in glycemia and glucose tolerance secondary to augmented insulin responsiveness. Improvements were concomitant with increased levels of lymphatic GLP-1 in the fasted state and increased levels of intestinal Akkermansia muciniphila. Improvements in fasting glycemia after GB-IL were mitigated with exendin-9, a GLP-1 receptor antagonist, or cholestyramine, a bile acid sequestrant. The glucoregulatory effects of GB-IL were lost in whole-body Glp-1r mice.
CONCLUSIONS - Bile diversion to the ileum improves glucose homeostasis via an intestinal Fxr-Glp-1 axis. Altered intestinal bile acid availability, independent of weight loss, and intestinal Akkermansia muciniphila appear to mediate the metabolic changes observed after bariatric surgery and might be manipulated for treatment of obesity and diabetes.
Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Longer lactation duration is associated with decreased prevalence of non-alcoholic fatty liver disease in women.
Ajmera VH, Terrault NA, VanWagner LB, Sarkar M, Lewis CE, Carr JJ, Gunderson EP
(2019) J Hepatol 70: 126-132
MeSH Terms: Adolescent, Adult, Biomarkers, Blood Glucose, Breast Feeding, Disease Progression, Female, Follow-Up Studies, Humans, Insulin, Lactation, Non-alcoholic Fatty Liver Disease, Prevalence, Prognosis, Retrospective Studies, Risk Factors, Time Factors, Triglycerides, United States, Young Adult
Show Abstract · Added January 10, 2020
BACKGROUND & AIMS - Lactation lowers blood glucose and triglycerides, and increases insulin sensitivity. We hypothesized that a longer duration of lactation would be associated with lower prevalence of non-alcoholic fatty liver disease (NAFLD), which is the leading cause of chronic liver disease in the United States.
METHODS - Participants from the Coronary Artery Risk Development in Young Adults cohort study who delivered ≥ 1 child post-baseline (Y0: 1985-1986), and underwent CT quantification of hepatic steatosis 25 years following cohort entry (Y25: 2010-2011) were included (n = 844). The duration of lactation was summed for all post-baseline births, and NAFLD at Y25 was assessed by central review of CT images and defined by liver attenuation ≤ 40 Hounsfield Units after exclusion of other causes of hepatic steatosis. Unadjusted and multivariable logistic regression analyses were performed using an a priori set of confounding variables; age, race, education, and baseline body mass index.
RESULTS - Of 844 women who delivered after baseline (48% black, 52% white, mean age 49 years at Y25 exam), 32% reported lactation duration of 0 to 1 month, 25% reported >1 to 6 months, 43% reported more than 6 months, while 54 (6%) had NAFLD. Longer lactation duration was inversely associated with NAFLD in unadjusted logistic regression. For women who reported >6 months lactation compared to those reporting 0-1 month, the odds ratio for NAFLD was 0.48 (95% CI 0.25-0.94; p = 0.03) and the association remained after adjustment for confounders (adjusted odds ratio 0.46; 95% CI 0.22-0.97; p = 0.04).
CONCLUSIONS - A longer duration of lactation, particularly greater than 6 months, is associated with lower odds of NAFLD in mid-life and may represent a modifiable risk factor for NAFLD.
LAY SUMMARY - A longer duration of breastfeeding has been associated with multiple potential health benefits for the mother including reduction in heart disease, diabetes and certain cancers. In this study we found that breastfeeding for longer than 6 months was associated with a lower risk of non-alcoholic fatty liver disease in mid-life.
Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet.
Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M
(2018) Am J Physiol Endocrinol Metab 315: E1251-E1263
MeSH Terms: Animals, Blood Glucose, Cell Proliferation, Diabetes Mellitus, Type 2, Diet, High-Fat, Insulin Resistance, Insulin-Secreting Cells, Lipid Metabolism, Lipids, Liver, Male, Mice, Muscle, Skeletal, Obesity
Show Abstract · Added April 15, 2019
Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.
0 Communities
1 Members
0 Resources
14 MeSH Terms