Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 75

Publication Record

Connections

Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.
Vanderburgh JP, Fernando SJ, Merkel AR, Sterling JA, Guelcher SA
(2017) Adv Healthc Mater 6:
MeSH Terms: Biocompatible Materials, Bone Regeneration, Cancellous Bone, Cartilage, Cell Differentiation, Cells, Cultured, Humans, Materials Testing, Mesenchymal Stem Cells, Osteogenesis, Printing, Three-Dimensional, Tissue Engineering, Tissue Scaffolds
Show Abstract · Added March 21, 2018
3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the <100 micrometer-scale trabecular architecture essential for investigating the cellular response to the morphometric properties of bone. In this study, it is hypothesized that the architecture of trabecular bone regulates osteoblast differentiation and mineralization. To test this hypothesis, human bone-templated 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Porcine Ischemic Wound-Healing Model for Preclinical Testing of Degradable Biomaterials.
Patil P, Martin JR, Sarett SM, Pollins AC, Cardwell NL, Davidson JM, Guelcher SA, Nanney LB, Duvall CL
(2017) Tissue Eng Part C Methods 23: 754-762
MeSH Terms: Animals, Biocompatible Materials, Blood Vessels, Disease Models, Animal, Ischemia, Macrophages, Materials Testing, Skin, Surgical Flaps, Sus scrofa, Tissue Scaffolds, Wound Healing
Show Abstract · Added March 14, 2018
Impaired wound healing that mimics chronic human skin pathologies is difficult to achieve in current animal models, hindering testing and development of new therapeutic biomaterials that promote wound healing. In this article, we describe a refinement and simplification of the porcine ischemic wound model that increases the size and number of experimental sites per animal. By comparing three flap geometries, we adopted a superior configuration (15 × 10 cm) that enabled testing of twenty 1 cm wounds in each animal: 8 total ischemic wounds within 4 bipedicle flaps and 12 nonischemic wounds. The ischemic wounds exhibited impaired skin perfusion for ∼1 week. To demonstrate the utility of the model for comparative testing of tissue regenerative biomaterials, we evaluated the healing process in wounds implanted with highly porous poly (thioketal) urethane (PTK-UR) scaffolds that were fabricated through reaction of reactive oxygen species (ROS)-cleavable PTK macrodiols with isocyanates. PTK-lysine triisocyanate (LTI) scaffolds degraded significantly in vitro under both oxidative and hydrolytic conditions whereas PTK-hexamethylene diisocyanate trimer (HDIt) scaffolds were resistant to hydrolytic breakdown and degraded exclusively through an ROS-dependent mechanism. Upon placement into porcine wounds, both types of PTK-UR materials fostered new tissue ingrowth over 10 days in both ischemic and nonischemic tissue. However, wound perfusion, tissue infiltration and the abundance of pro-regenerative, M2-polarized macrophages were markedly lower in ischemic wounds independent of scaffold type. The PTK-LTI implants significantly improved tissue infiltration and perfusion compared with analogous PTK-HDIt scaffolds in ischemic wounds. Both LTI and HDIt-based PTK-UR implants enhanced M2 macrophage activity, and these cells were selectively localized at the scaffold/tissue interface. In sum, this modified porcine wound-healing model decreased animal usage, simplified procedures, and permitted a more robust evaluation of tissue engineering materials in preclinical wound healing research. Deployment of the model for a relevant biomaterial comparison yielded results that support the use of the PTK-LTI over the PTK-HDIt scaffold formulation for future advanced therapeutic studies.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Oxidation and degradation of polypropylene transvaginal mesh.
Talley AD, Rogers BR, Iakovlev V, Dunn RF, Guelcher SA
(2017) J Biomater Sci Polym Ed 28: 444-458
MeSH Terms: Biocompatible Materials, Female, Humans, Materials Testing, Microscopy, Electron, Scanning, Oxidation-Reduction, Photoelectron Spectroscopy, Polypropylenes, Spectroscopy, Fourier Transform Infrared, Surgical Mesh
Show Abstract · Added March 25, 2018
Polypropylene (PP) transvaginal mesh (TVM) repair for stress urinary incontinence (SUI) has shown promising short-term objective cure rates. However, life-altering complications have been associated with the placement of PP mesh for SUI repair. PP degradation as a result of the foreign body reaction (FBR) has been proposed as a contributing factor to mesh complications. We hypothesized that PP oxidizes under in vitro conditions simulating the FBR, resulting in degradation of the PP. Three PP mid-urethral slings from two commercial manufacturers were evaluated. Test specimens (n = 6) were incubated in oxidative medium for up to 5 weeks. Oxidation was assessed by Fourier Transform Infrared Spectroscopy (FTIR), and degradation was evaluated by scanning electron microscopy (SEM). FTIR spectra of the slings revealed evidence of carbonyl and hydroxyl peaks after 5 weeks of incubation time, providing evidence of oxidation of PP. SEM images at 5 weeks showed evidence of surface degradation, including pitting and flaking. Thus, oxidation and degradation of PP pelvic mesh were evidenced by chemical and physical changes under simulated in vivo conditions. To assess changes in PP surface chemistry in vivo, fibers were recovered from PP mesh explanted from a single patient without formalin fixation, untreated (n = 5) or scraped (n = 5) to remove tissue, and analyzed by X-ray photoelectron spectroscopy. Mechanical scraping removed adherent tissue, revealing an underlying layer of oxidized PP. These findings underscore the need for further research into the relative contribution of oxidative degradation to complications associated with PP-based TVM devices in larger cohorts of patients.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Sustained Administration of β-cell Mitogens to Intact Mouse Islets Ex Vivo Using Biodegradable Poly(lactic-co-glycolic acid) Microspheres.
Pasek RC, Kavanaugh TE, Duvall CL, Gannon MA
(2016) J Vis Exp :
MeSH Terms: Animals, Biocompatible Materials, Coculture Techniques, Drug Delivery Systems, Glycols, Humans, Insulin-Secreting Cells, Islets of Langerhans, Lactic Acid, Mice, Microspheres, Mitogens, Polyglycolic Acid
Show Abstract · Added March 14, 2018
The development of biomaterials has significantly increased the potential for targeted drug delivery to a variety of cell and tissue types, including the pancreatic β-cells. In addition, biomaterial particles, hydrogels, and scaffolds also provide a unique opportunity to administer sustained, controllable drug delivery to β-cells in culture and in transplanted tissue models. These technologies allow the study of candidate β-cell proliferation factors using intact islets and a translationally relevant system. Moreover, determining the effectiveness and feasibility of candidate factors for stimulating β-cell proliferation in a culture system is critical before moving forward to in vivo models. Herein, we describe a method to co-culture intact mouse islets with biodegradable compound of interest (COI)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres for the purpose of assessing the effects of sustained in situ release of mitogenic factors on β-cell proliferation. This technique describes in detail how to generate PLGA microspheres containing a desired cargo using commercially available reagents. While the described technique uses recombinant human Connective tissue growth factor (rhCTGF) as an example, a wide variety of COI could readily be used. Additionally, this method utilizes 96-well plates to minimize the amount of reagents necessary to assess β-cell proliferation. This protocol can be readily adapted to use alternative biomaterials and other endocrine cell characteristics such as cell survival and differentiation status.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.
Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, Goldstein AS
(2015) J Biomech Eng 137:
MeSH Terms: Animals, Biocompatible Materials, Cell Count, Cell Line, Cell Survival, Elasticity, Gene Expression Regulation, Materials Testing, Membrane Proteins, Mesenchymal Stem Cells, Mice, Polyurethanes, Stress, Mechanical, Surface Properties, Tenascin, Tensile Strength, Weight-Bearing
Show Abstract · Added February 23, 2016
Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression relative to the cyclic load group. These results demonstrate the feasibility of maintaining cell adhesion and alignment on semi-aligned fibrous elastomeric substrates under different mechanical conditions. The study confirms that cell morphology is sensitive to the mechanical environment and suggests that expression of select connective tissue genes may be enhanced on large diameter fiber meshes under static tensile loads.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles.
Sarett SM, Kilchrist KV, Miteva M, Duvall CL
(2015) J Biomed Mater Res A 103: 3107-16
MeSH Terms: Animals, Biocompatible Materials, Biological Transport, Active, Drug Delivery Systems, Endosomes, Gene Silencing, HEK293 Cells, Humans, Materials Testing, Mesenchymal Stem Cells, Mice, Mice, Inbred C57BL, NIH 3T3 Cells, Nanoparticles, Palmitic Acid, Polymers, RNA, Small Interfering
Show Abstract · Added March 14, 2018
Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene prolyl hydroxylase domain protein 2 (PHD2) . PA conjugation also significantly increased longevity of silencing activity following a single treatment in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications.
Copyright © 2015 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages.
Ortega RA, Barham WJ, Kumar B, Tikhomirov O, McFadden ID, Yull FE, Giorgio TD
(2015) Nanoscale 7: 500-10
MeSH Terms: Animals, Biocompatible Materials, Cell Line, Tumor, Cell Survival, Coculture Techniques, Drug Carriers, Endosomes, Female, Fluorescent Dyes, Lung, Lung Neoplasms, Macrophages, Mammary Neoplasms, Animal, Mannose, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Nanoparticles, Ovarian Neoplasms, Polymers, RNA, Small Interfering, Transplantation, Homologous, Tumor Microenvironment
Show Abstract · Added December 17, 2014
Tumor associated macrophages (TAMs) can modify the tumor microenvironment to create a pro-tumor niche. Manipulation of the TAM phenotype is a novel, potential therapeutic approach to engage anti-cancer immunity. siRNA is a molecular tool for knockdown of specific mRNAs that is tunable in both strength and duration. The use of siRNA to reprogram TAMs to adopt an immunogenic, anti-tumor phenotype is an attractive alternative to ablation of this cell population. One current difficulty with this approach is that TAMs are difficult to specifically target and transfect. We report here successful utilization of novel mannosylated polymer nanoparticles (MnNP) that are capable of escaping the endosomal compartment to deliver siRNA to TAMs in vitro and in vivo. Transfection with MnNP-siRNA complexes did not significantly decrease TAM cell membrane integrity in culture, nor did it create adverse kidney or liver function in mice, even at repeated doses of 5 mg kg(-1). Furthermore, MnNP effectively delivers labeled nucleotides to TAMs in mice with primary mammary tumors. We also confirmed TAM targeting in the solid tumors disseminated throughout the peritoneum of ovarian tumor bearing mice following injection of fluorescently labeled MnNP-nucleotide complexes into the peritoneum. Finally, we show enhanced uptake of MnNP in lung metastasis associated macrophages compared to untargeted particles when using an intubation delivery method. In summary, we have shown that MnNP specifically and effectively deliver siRNA to TAMs in vivo.
1 Communities
2 Members
0 Resources
23 MeSH Terms
Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model.
Adolph EJ, Pollins AC, Cardwell NL, Davidson JM, Guelcher SA, Nanney LB
(2014) J Biomater Sci Polym Ed 25: 1973-85
MeSH Terms: Animals, Apoptosis, Biocompatible Materials, Cell Proliferation, Humans, Lysine, Macrophages, Mechanical Phenomena, Neovascularization, Physiologic, Polyurethanes, Skin, Structure-Activity Relationship, Swine, Tissue Scaffolds, Wound Healing
Show Abstract · Added February 23, 2016
Lysine-derived polyurethane scaffolds (LTI-PUR) support cutaneous wound healing in loose-skinned small animal models. Due to the physiological and anatomical similarities of human and pig skin, we investigated the capacity of LTI-PUR scaffolds to support wound healing in a porcine excisional wound model. Modifications to scaffold design included the addition of carboxymethylcellulose (CMC) as a porogen to increase interconnectivity and an additional plasma treatment (Plasma) to decrease surface hydrophobicity. All LTI-PUR scaffold and formulations supported cellular infiltration and were biodegradable. At 15 days, CMC and plasma scaffolds simulated increased macrophages more so than LTI PUR or no treatment. This response was consistent with macrophage-mediated oxidative degradation of the lysine component of the scaffolds. Cell proliferation was similar in control and scaffold-treated wounds at 8 and 15 days. Neither apoptosis nor blood vessel area density showed significant differences in the presence of any of the scaffold variations compared with untreated wounds, providing further evidence that these synthetic biomaterials had no adverse effects on those pivotal wound healing processes. During the critical phase of granulation tissue formation in full thickness porcine excisional wounds, LTI-PUR scaffolds supported tissue infiltration, while undergoing biodegradation. Modifications to scaffold fabrication modify the reparative process. This study emphasizes the biocompatibility and favorable cellular responses of PUR scaffolding formulations in a clinically relevant animal model.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release.
Gupta MK, Martin JR, Werfel TA, Shen T, Page JM, Duvall CL
(2014) J Am Chem Soc 136: 14896-902
MeSH Terms: Acrylamides, Acrylic Resins, Animals, Biocompatible Materials, Drug Carriers, Drug Liberation, Hydrogels, Mice, Micelles, Models, Molecular, Molecular Conformation, NIH 3T3 Cells, Oxazines, Polymers, Reactive Oxygen Species, Rheology, Sulfides, Temperature
Show Abstract · Added March 14, 2018
A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive oxygen species (ROS) triggered degradation and drug release. At ambient temperature (25 °C), PPS-b-PDMA-b-PNIPAAM assembled into 66 ± 32 nm micelles comprising a hydrophobic PPS core and PNIPAAM on the outer corona. Upon heating to physiologic temperature (37 °C), which exceeds the lower critical solution temperature (LCST) of PNIPAAM, micelle solutions (at ≥2.5 wt %) sharply transitioned into stable, hydrated gels. Temperature-dependent rheology indicated that the equilibrium storage moduli (G') of hydrogels at 2.5, 5.0, and 7.5 wt % were 20, 380, and 850 Pa, respectively. The PPS-b-PDMA-b-PNIPAAM micelles were preloaded with the model drug Nile red, and the resulting hydrogels demonstrated ROS-dependent drug release. Likewise, exposure to the peroxynitrite generator SIN-1 degraded the mechanical properties of the hydrogels. The hydrogels were cytocompatible in vitro and were demonstrated to have utility for cell encapsulation and delivery. These hydrogels also possessed inherent cell-protective properties and reduced ROS-mediated cellular death in vitro. Subcutaneously injected PPS-b-PDMA-b-PNIPAAM polymer solutions formed stable hydrogels that sustained local release of the model drug Nile red for 14 days in vivo. These collective data demonstrate the potential use of PPS-b-PDMA-b-PNIPAAM as an injectable, cyto-protective hydrogel that overcomes conventional PNIPAAM hydrogel limitations such as syneresis, lack of degradability, and lack of inherent drug loading and environmentally responsive release mechanisms.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Current progress in Reactive Oxygen Species (ROS)-Responsive materials for biomedical applications.
Lee SH, Gupta MK, Bang JB, Bae H, Sung HJ
(2013) Adv Healthc Mater 2: 908-15
MeSH Terms: Animals, Biocompatible Materials, Reactive Oxygen Species, Solubility
Show Abstract · Added February 12, 2015
Recently, significant progress has been made in developing “stimuli-sensitive” biomaterials as a new therapeutic approach to interact with dynamic physiological conditions. Reactive oxygen species (ROS) production has been implicated in important pathophysiological events, such as atherosclerosis,aging, and cancer. ROS are often overproduced locally in diseased cells and tissues, and they individually and synchronously contribute to many of the abnormalities associated with local pathogenesis. Therefore, the advantages of developing ROS-responsive materials extend beyond site-specific targeting of therapeutic delivery, and potentially include navigating,sensing, and repairing the cellular damages via programmed changes in material properties. Here we review the mechanism and development of biomaterials with ROS-induced solubility switch or degradation, as well as their performance and potential for future biomedical applications.
0 Communities
1 Members
0 Resources
4 MeSH Terms