Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1001

Publication Record

Connections

Cryo-EM structures of the human cation-chloride cotransporter KCC1.
Liu S, Chang S, Han B, Xu L, Zhang M, Zhao C, Yang W, Wang F, Li J, Delpire E, Ye S, Bai XC, Guo J
(2019) Science 366: 505-508
MeSH Terms: Amino Acid Sequence, Animals, Binding Sites, Cryoelectron Microscopy, HEK293 Cells, Humans, Ion Transport, Mice, Molecular Dynamics Simulation, Oocytes, Protein Domains, Protein Multimerization, Protein Structure, Quaternary, Sequence Alignment, Sodium-Potassium-Chloride Symporters, Symporters, Xenopus laevis
Show Abstract · Added March 18, 2020
Cation-chloride cotransporters (CCCs) mediate the coupled, electroneutral symport of cations with chloride across the plasma membrane and are vital for cell volume regulation, salt reabsorption in the kidney, and γ-aminobutyric acid (GABA)-mediated modulation in neurons. Here we present cryo-electron microscopy (cryo-EM) structures of human potassium-chloride cotransporter KCC1 in potassium chloride or sodium chloride at 2.9- to 3.5-angstrom resolution. KCC1 exists as a dimer, with both extracellular and transmembrane domains involved in dimerization. The structural and functional analyses, along with computational studies, reveal one potassium site and two chloride sites in KCC1, which are all required for the ion transport activity. KCC1 adopts an inward-facing conformation, with the extracellular gate occluded. The KCC1 structures allow us to model a potential ion transport mechanism in KCCs and provide a blueprint for drug design.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Structural basis for influenza virus NS1 protein block of mRNA nuclear export.
Zhang K, Xie Y, Muñoz-Moreno R, Wang J, Zhang L, Esparza M, García-Sastre A, Fontoura BMA, Ren Y
(2019) Nat Microbiol 4: 1671-1679
MeSH Terms: A549 Cells, Active Transport, Cell Nucleus, Binding Sites, Cell Nucleus, Cells, Cultured, Crystallography, X-Ray, Humans, Influenza A virus, Influenza, Human, Models, Molecular, Multiprotein Complexes, Nuclear Pore Complex Proteins, Nucleocytoplasmic Transport Proteins, Protein Binding, RNA, Messenger, RNA-Binding Proteins, Viral Nonstructural Proteins
Show Abstract · Added March 3, 2020
Influenza viruses antagonize key immune defence mechanisms via the virulence factor non-structural protein 1 (NS1). A key mechanism of virulence by NS1 is blocking nuclear export of host messenger RNAs, including those encoding immune factors; however, the direct cellular target of NS1 and the mechanism of host mRNA export inhibition are not known. Here, we identify the target of NS1 as the mRNA export receptor complex, nuclear RNA export factor 1-nuclear transport factor 2-related export protein 1 (NXF1-NXT1), which is the principal receptor mediating docking and translocation of mRNAs through the nuclear pore complex via interactions with nucleoporins. We determined the crystal structure of NS1 in complex with NXF1-NXT1 at 3.8 Å resolution. The structure reveals that NS1 prevents binding of NXF1-NXT1 to nucleoporins, thereby inhibiting mRNA export through the nuclear pore complex into the cytoplasm for translation. We demonstrate that a mutant influenza virus deficient in binding NXF1-NXT1 does not block host mRNA export and is attenuated. This attenuation is marked by the release of mRNAs encoding immune factors from the nucleus. In sum, our study uncovers the molecular basis of a major nuclear function of influenza NS1 protein that causes potent blockage of host gene expression and contributes to inhibition of host immunity.
0 Communities
1 Members
0 Resources
MeSH Terms
A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation.
Sammons RM, Perry NA, Li Y, Cho EJ, Piserchio A, Zamora-Olivares DP, Ghose R, Kaoud TS, Debevec G, Bartholomeusz C, Gurevich VV, Iverson TM, Giulianotti M, Houghten RA, Dalby KN
(2019) ACS Chem Biol 14: 1183-1194
MeSH Terms: Binding Sites, Crystallography, X-Ray, Dose-Response Relationship, Drug, Enzyme Activation, Guanidine, Humans, Mitogen-Activated Protein Kinase 1, Nuclear Magnetic Resonance, Biomolecular, Phosphorylation, Protein Kinase Inhibitors, Substrate Specificity
Show Abstract · Added March 18, 2020
Extracellular signal-regulated kinases (ERK1/2) are mitogen-activated protein kinases (MAPKs) that play a pro-tumorigenic role in numerous cancers. ERK1/2 possess two protein-docking sites that are distinct from the active site: the D-recruitment site (DRS) and the F-recruitment site. These docking sites facilitate substrate recognition, intracellular localization, signaling specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic context may overcome many problems associated with traditional ATP-competitive inhibitors. Here, we identified a new class of inhibitors that target the ERK DRS by screening a synthetic combinatorial library of more than 30 million compounds. The screen detects the competitive displacement of a fluorescent peptide from the DRS of ERK2. The top molecular scaffold from the screen was optimized for structure-activity relationship by positional scanning of different functional groups. This resulted in 10 compounds with similar binding affinities and a shared core structure consisting of a tertiary amine hub with three functionalized cyclic guanidino branches. Compound 2507-1 inhibited ERK2 from phosphorylating a DRS-targeting substrate and prevented the phosphorylation of ERK2 by a constitutively active MEK1 (MAPK/ERK kinase 1) mutant. Interaction between an analogue, 2507-8, and the ERK2 DRS was confirmed by nuclear magnetic resonance and X-ray crystallography. 2507-8 forms critical interactions at the common docking domain residue Asp319 via an arginine-like moiety that is shared by all 10 hits, suggesting a common binding mode. The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.
0 Communities
1 Members
0 Resources
MeSH Terms
Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors That Demonstrate in Vivo Activity in Mouse Xenograft Models of Human Cancer.
Lee T, Christov PP, Shaw S, Tarr JC, Zhao B, Veerasamy N, Jeon KO, Mills JJ, Bian Z, Sensintaffar JL, Arnold AL, Fogarty SA, Perry E, Ramsey HE, Cook RS, Hollingshead M, Davis Millin M, Lee KM, Koss B, Budhraja A, Opferman JT, Kim K, Arteaga CL, Moore WJ, Olejniczak ET, Savona MR, Fesik SW
(2019) J Med Chem 62: 3971-3988
MeSH Terms: Animals, Antineoplastic Agents, Azepines, Binding Sites, Cell Line, Tumor, Cell Survival, Crystallography, X-Ray, Drug Evaluation, Preclinical, Female, Humans, Mice, Mice, Inbred NOD, Mice, SCID, Molecular Dynamics Simulation, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasms, Protein Structure, Tertiary, Small Molecule Libraries, Structure-Activity Relationship, Xenograft Model Antitumor Assays
Show Abstract · Added April 15, 2019
Overexpression of myeloid cell leukemia-1 (Mcl-1) in cancers correlates with high tumor grade and poor survival. Additionally, Mcl-1 drives intrinsic and acquired resistance to many cancer therapeutics, including B cell lymphoma 2 family inhibitors, proteasome inhibitors, and antitubulins. Therefore, Mcl-1 inhibition could serve as a strategy to target cancers that require Mcl-1 to evade apoptosis. Herein, we describe the use of structure-based design to discover a novel compound (42) that robustly and specifically inhibits Mcl-1 in cell culture and animal xenograft models. Compound 42 binds to Mcl-1 with picomolar affinity and inhibited growth of Mcl-1-dependent tumor cell lines in the nanomolar range. Compound 42 also inhibited the growth of hematological and triple negative breast cancer xenografts at well-tolerated doses. These findings highlight the use of structure-based design to identify small molecule Mcl-1 inhibitors and support the use of 42 as a potential treatment strategy to block Mcl-1 activity and induce apoptosis in Mcl-1-dependent cancers.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity.
Aho ER, Wang J, Gogliotti RD, Howard GC, Phan J, Acharya P, Macdonald JD, Cheng K, Lorey SL, Lu B, Wenzel S, Foshage AM, Alvarado J, Wang F, Shaw JG, Zhao B, Weissmiller AM, Thomas LR, Vakoc CR, Hall MD, Hiebert SW, Liu Q, Stauffer SR, Fesik SW, Tansey WP
(2019) Cell Rep 26: 2916-2928.e13
MeSH Terms: Binding Sites, Cell Line, Tumor, Chromatin, Enzyme Inhibitors, Female, HEK293 Cells, Humans, Intracellular Signaling Peptides and Proteins, Male, Protein Binding
Show Abstract · Added March 26, 2019
The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The STAT5b Linker Domain Mediates the Selectivity of Catechol Bisphosphates for STAT5b over STAT5a.
Gräb J, Berg A, Blechschmidt L, Klüver B, Rubner S, Fu DY, Meiler J, Gräber M, Berg T
(2019) ACS Chem Biol 14: 796-805
MeSH Terms: Binding Sites, Catechols, Humans, Protein Binding, Protein Interaction Domains and Motifs, STAT5 Transcription Factor, Tumor Suppressor Proteins, src Homology Domains
Show Abstract · Added March 21, 2020
STAT family proteins are important mediators of cell signaling and represent therapeutic targets for the treatment of human diseases. Most STAT inhibitors target the protein-protein interaction domain, the SH2 domain, but specificity for a single STAT protein is often limited. Recently, we developed catechol bisphosphates as the first inhibitors of STAT5b demonstrated to exhibit a high degree of selectivity over the close homologue STAT5a. Here, we show that the amino acid in position 566 of the linker domain, not the SH2 domain, is the main determinant of specificity. Arg566 in wild-type STAT5b favors tight binding of catechol bisphosphates, while Trp566 in wild-type STAT5a does not. Amino acid 566 also determines the affinity for a tyrosine-phosphorylated peptide derived from the EPO receptor for STAT5a and STAT5b, demonstrating the functional relevance of the STAT5 linker domain for the adjacent SH2 domain. These results provide the first demonstration that a residue in the linker domain can determine the affinity of nonpeptidic small-molecule inhibitors for the SH2 domain of STAT proteins. We propose targeting the interface between the SH2 domain and linker domain as a novel design approach for the development of potent and selective STAT inhibitors. In addition, our data suggest that the linker domain could contribute to the enigmatically divergent biological functions of the two STAT5 proteins.
0 Communities
1 Members
0 Resources
MeSH Terms
Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains.
Turner HL, Pallesen J, Lang S, Bangaru S, Urata S, Li S, Cottrell CA, Bowman CA, Crowe JE, Wilson IA, Ward AB
(2019) PLoS Biol 17: e3000139
MeSH Terms: Amino Acid Sequence, Animals, Antibodies, Neutralizing, Antibody Specificity, Baculoviridae, Binding Sites, Cloning, Molecular, Cryoelectron Microscopy, Gene Expression, Hemagglutinin Glycoproteins, Influenza Virus, Hydrogen Bonding, Immunoglobulin Fab Fragments, Influenza A virus, Molecular Docking Simulation, Protein Binding, Protein Conformation, alpha-Helical, Protein Conformation, beta-Strand, Protein Interaction Domains and Motifs, Recombinant Proteins, Sequence Alignment, Sequence Homology, Amino Acid, Sf9 Cells, Spodoptera
Show Abstract · Added March 31, 2019
Seasonal influenza virus infections can cause significant morbidity and mortality, but the threat from the emergence of a new pandemic influenza strain might have potentially even more devastating consequences. As such, there is intense interest in isolating and characterizing potent neutralizing antibodies that target the hemagglutinin (HA) viral surface glycoprotein. Here, we use cryo-electron microscopy (cryoEM) to decipher the mechanism of action of a potent HA head-directed monoclonal antibody (mAb) bound to an influenza H7 HA. The epitope of the antibody is not solvent accessible in the compact, prefusion conformation that typifies all HA structures to date. Instead, the antibody binds between HA head protomers to an epitope that must be partly or transiently exposed in the prefusion conformation. The "breathing" of the HA protomers is implied by the exposure of this epitope, which is consistent with metastability of class I fusion proteins. This structure likely therefore represents an early structural intermediate in the viral fusion process. Understanding the extent of transient exposure of conserved neutralizing epitopes also may lead to new opportunities to combat influenza that have not been appreciated previously.
0 Communities
1 Members
0 Resources
23 MeSH Terms
The structural basis of the arrestin binding to GPCRs.
Gurevich VV, Gurevich EV
(2019) Mol Cell Endocrinol 484: 34-41
MeSH Terms: Animals, Arrestin, Binding Sites, G-Protein-Coupled Receptor Kinases, Humans, Models, Molecular, Phosphorylation, Protein Binding, Protein Conformation, Protein Domains, Receptors, G-Protein-Coupled
Show Abstract · Added March 18, 2020
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Copyright © 2019. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
MeSH Terms
Structural Model of Ghrelin Bound to its G Protein-Coupled Receptor.
Bender BJ, Vortmeier G, Ernicke S, Bosse M, Kaiser A, Els-Heindl S, Krug U, Beck-Sickinger A, Meiler J, Huster D
(2019) Structure 27: 537-544.e4
MeSH Terms: Animals, Binding Sites, COS Cells, Chlorocebus aethiops, Ghrelin, HEK293 Cells, Humans, Magnetic Resonance Spectroscopy, Models, Molecular, Mutagenesis, Site-Directed, Protein Binding, Protein Conformation, Receptors, Ghrelin
Show Abstract · Added March 21, 2020
The peptide ghrelin targets the growth hormone secretagogue receptor 1a (GHSR) to signal changes in cell metabolism and is a sought-after therapeutic target, although no structure is known to date. To investigate the structural basis of ghrelin binding to GHSR, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, site-directed mutagenesis, and Rosetta modeling. The use of saturation transfer difference NMR identified key residues in the peptide for receptor binding beyond the known motif. This information combined with assignment of the secondary structure of ghrelin in its receptor-bound state was incorporated into Rosetta using an approach that accounts for flexible binding partners. The NMR data and models revealed an extended binding surface that was confirmed via mutagenesis. Our results agree with a growing evidence of peptides interacting via two sites at G protein-coupled receptors.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Insight on mutation-induced resistance to anaplastic lymphoma kinase inhibitor ceritinib from molecular dynamics simulations.
He MY, Li WK, Meiler J, Zheng QC, Zhang HX
(2019) Biopolymers 110: e23257
MeSH Terms: Adenosine Triphosphate, Anaplastic Lymphoma Kinase, Binding Sites, Drug Resistance, Neoplasm, Humans, Molecular Dynamics Simulation, Mutagenesis, Site-Directed, Neoplasms, Principal Component Analysis, Protein Kinase Inhibitors, Protein Structure, Tertiary, Pyrimidines, Sulfones
Show Abstract · Added March 21, 2020
Ceritinib, an advanced anaplastic lymphoma kinase (ALK) next-generation inhibitor, has been proved excellent antitumor activity in the treatment of ALK-associated cancers. However, the accumulation of acquired resistance mutations compromise the therapeutic efficacy of ceritinib. Despite abundant mutagenesis data, the structural determinants for reduced ceritinib binding in mutants remains elusive. Focusing on the G1123S and F1174C mutations, we applied molecular dynamics (MD) simulations to study possible reasons for drug resistance caused by these mutations. The MD simulations predict that the studied mutations allosterically impact the configurations of the ATP-binding pocket. An important hydrophobic cluster is identified that connects P-loop and the αC-helix, which has effects on stabilizing the conformation of ATP-binding pocket. It is suggested, in this study, that the G1123S and F1174C mutations can induce the conformational change of P-loop thereby causing the reduced ceritinib affinity and causing drug resistance.
© 2019 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms