Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 42

Publication Record


MEK Inhibitor Reverses Metaplasia and Allows Re-Emergence of Normal Lineages in Helicobacter pylori-Infected Gerbils.
Yang Q, Yasuda T, Choi E, Toyoda T, Roland JT, Uchida E, Yoshida H, Seto Y, Goldenring JR, Nomura S
(2019) Gastroenterology 156: 577-581.e4
MeSH Terms: Acrylonitrile, Aniline Compounds, Animals, Benzimidazoles, Biopsy, Needle, Disease Models, Animal, Gastric Mucosa, Gerbillinae, Helicobacter Infections, Helicobacter pylori, Immunohistochemistry, Male, Metaplasia, Random Allocation, Reference Values, Treatment Outcome
Added November 14, 2018
0 Communities
1 Members
0 Resources
16 MeSH Terms
Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions.
Choi E, Hendley AM, Bailey JM, Leach SD, Goldenring JR
(2016) Gastroenterology 150: 918-30.e13
MeSH Terms: Animals, Anticarcinogenic Agents, Benzimidazoles, Cell Differentiation, Cell Lineage, Cell Proliferation, Cell Transformation, Neoplastic, Chief Cells, Gastric, Disease Progression, Female, Gene Expression Regulation, Neoplastic, Genes, ras, Genetic Predisposition to Disease, Humans, Macrophages, Male, Metaplasia, Mice, Inbred C57BL, Mice, Transgenic, Mitogen-Activated Protein Kinase Kinases, Mutation, Phenotype, Protein Kinase Inhibitors, Signal Transduction, Stomach Neoplasms, Time Factors, Transcriptional Activation
Show Abstract · Added March 28, 2016
BACKGROUND & AIMS - Gastric cancer develops in the context of parietal cell loss, spasmolytic polypeptide-expressing metaplasia (SPEM), and intestinal metaplasia (IM). We investigated whether expression of the activated form of Ras in gastric chief cells of mice leads to the development of SPEM, as well as progression of metaplasia.
METHODS - We studied Mist1-CreERT2Tg/+;LSL-K-Ras(G12D)Tg/+ (Mist1-Kras) mice, which express the active form of Kras in chief cells on tamoxifen exposure. We studied Mist1-CreERT2Tg/+;LSL-KRas (G12D)Tg/+;R26RmTmG/+ (Mist1-Kras-mTmG) mice to examine whether chief cells that express active Kras give rise to SPEM and IM. Some mice received intraperitoneal injections of the Mitogen-activated protein kinase kinase (MEK) inhibitor, selumetinib, for 14 consecutive days. Gastric tissues were collected and analyzed by immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction.
RESULTS - Mist1-Kras mice developed metaplastic glands, which completely replaced normal fundic lineages and progressed to IM within 3-4 months after tamoxifen injection. The metaplastic glands expressed markers of SPEM and IM, and were infiltrated by macrophages. Lineage tracing studies confirmed that the metaplasia developed directly from Kras (G12D)-induced chief cells. Selumetinib induced persistent regression of SPEM and IM, and re-established normal mucosal cells, which were derived from normal gastric progenitor cells.
CONCLUSIONS - Expression of activated Ras in chief cells of Mist1-Kras mice led to the full range of metaplastic lineage transitions, including SPEM and IM. Inhibition of Ras signaling by inhibition of MEK might reverse preneoplastic metaplasia in the stomach.
Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
27 MeSH Terms
Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor.
Chang SD, Mascarella SW, Spangler SM, Gurevich VV, Navarro HA, Carroll FI, Bruchas MR
(2015) Mol Pharmacol 88: 502-11
MeSH Terms: Acetates, Benzimidazoles, HEK293 Cells, Humans, Narcotic Antagonists, Piperidines, Protein Binding, Receptors, Opioid, Spiro Compounds, Structure-Activity Relationship
Show Abstract · Added February 15, 2016
Comprehensive studies that consolidate selective ligands, quantitative comparisons of G protein versus arrestin-2/3 coupling, together with structure-activity relationship models for G protein-coupled receptor (GPCR) systems are less commonly employed. Here we examine biased signaling at the nociceptin/orphanin FQ opioid receptor (NOPR), the most recently identified member of the opioid receptor family. Using real-time, live-cell assays, we identified the signaling profiles of several NOPR-selective ligands in upstream GPCR signaling (G protein and arrestin pathways) to determine their relative transduction coefficients and signaling bias. Complementing this analysis, we designed novel ligands on the basis of NOPR antagonist J-113,397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] to explore structure-activity relationships. Our study shows that NOPR is capable of biased signaling, and further, the NOPR selective ligands MCOPPB [1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-(3R)-3-piperidinyl-1H-benzimidazole trihydrochloride] and NNC 63-0532 [8-(1-naphthalenylmethyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decane-3-acetic acid, methyl ester] are G protein-biased agonists. Additionally, minor structural modification of J-113,397 can dramatically shift signaling from antagonist to partial agonist activity. We explore these findings with in silico modeling of binding poses. This work is the first to demonstrate functional selectivity and identification of biased ligands at the nociceptin opioid receptor.
Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function.
Burke SJ, May AL, Noland RC, Lu D, Brissova M, Powers AC, Sherrill EM, Karlstad MD, Campagna SR, Stephens JM, Collier JJ
(2015) J Biol Chem 290: 13401-16
MeSH Terms: 3T3-L1 Cells, Animals, Anti-Inflammatory Agents, Apoptosis, Benzimidazoles, Benzothiazoles, Blotting, Western, Cell Proliferation, Cells, Cultured, Dexamethasone, Gene Expression Profiling, Hepatocytes, Humans, Hydrocortisone, Immunoenzyme Techniques, Inflammation, Insulin, Insulin Secretion, Islets of Langerhans, Metabolomics, Mice, Mice, Inbred C57BL, Oxygen Consumption, RNA, Messenger, Rats, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Thiazoles
Show Abstract · Added July 28, 2015
Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
1 Members
0 Resources
28 MeSH Terms
Computational and functional analyses of a small-molecule binding site in ROMK.
Swale DR, Sheehan JH, Banerjee S, Husni AS, Nguyen TT, Meiler J, Denton JS
(2015) Biophys J 108: 1094-103
MeSH Terms: Amino Acid Sequence, Benzimidazoles, Binding Sites, Molecular Docking Simulation, Molecular Dynamics Simulation, Molecular Sequence Data, Potassium Channel Blockers, Potassium Channels, Inwardly Rectifying, Protein Binding
Show Abstract · Added February 5, 2016
The renal outer medullary potassium channel (ROMK, or Kir1.1, encoded by KCNJ1) critically regulates renal tubule electrolyte and water transport and hence blood volume and pressure. The discovery of loss-of-function mutations in KCNJ1 underlying renal salt and water wasting and lower blood pressure has sparked interest in developing new classes of antihypertensive diuretics targeting ROMK. The recent development of nanomolar-affinity small-molecule inhibitors of ROMK creates opportunities for exploring the chemical and physical basis of ligand-channel interactions required for selective ROMK inhibition. We previously reported that the bis-nitro-phenyl ROMK inhibitor VU591 exhibits voltage-dependent knock-off at hyperpolarizing potentials, suggesting that the binding site is located within the ion-conduction pore. In this study, comparative molecular modeling and in silico ligand docking were used to interrogate the full-length ROMK pore for energetically favorable VU591 binding sites. Cluster analysis of 2498 low-energy poses resulting from 9900 Monte Carlo docking trajectories on each of 10 conformationally distinct ROMK comparative homology models identified two putative binding sites in the transmembrane pore that were subsequently tested for a role in VU591-dependent inhibition using site-directed mutagenesis and patch-clamp electrophysiology. Introduction of mutations into the lower site had no effect on the sensitivity of the channel to VU591. In contrast, mutations of Val(168) or Asn(171) in the upper site, which are unique to ROMK within the Kir channel family, led to a dramatic reduction in VU591 sensitivity. This study highlights the utility of computational modeling for defining ligand-ROMK interactions and proposes a mechanism for inhibition of ROMK.
Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
1 Communities
3 Members
0 Resources
9 MeSH Terms
Further evaluation of novel structural modifications to scaffolds that engender PLD isoform selective inhibition.
O'Reilly MC, Scott SA, Brown HA, Lindsley CW
(2014) Bioorg Med Chem Lett 24: 5553-5557
MeSH Terms: Animals, Benzimidazoles, Enzyme Inhibitors, HEK293 Cells, Humans, Kinetics, Microsomes, Phospholipase D, Piperidines, Protein Binding, Rats, Structure-Activity Relationship
Show Abstract · Added February 12, 2015
This Letter describes the on-going SAR efforts based on two scaffolds, a PLD1-biased piperidinyl benzimidazolone and a PLD2-biased piperidinyl triazaspirone, with the goal of enhancing PLD inhibitory potency and isoform selectivity. Here, we found that addition of an α-methyl moiety within the PLD2-biased piperidinyl triazaspirone scaffold abolished PLD2 preference, while the incorporation of substituents onto the piperidine moiety of the PLD1-biased piperidinyl benzimidazolone, or replacement with a bioisosteric [3.3.0] core, generally retained PLD1 preference, but at diminished significance. The SAR uncovered within these two allosteric PLD inhibitor series further highlights the inherent challenges of developing isoform selective PLD inhibitors.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling.
de Seigneux S, Courbebaisse M, Rutkowski JM, Wilhelm-Bals A, Metzger M, Khodo SN, Hasler U, Chehade H, Dizin E, Daryadel A, Stengel B, NephroTest Study Group, Girardin E, Prié D, Wagner CA, Scherer PE, Martin PY, Houillier P, Feraille E
(2015) J Am Soc Nephrol 26: 1608-18
MeSH Terms: Adult, Albuminuria, Analysis of Variance, Animals, Benzimidazoles, Blotting, Western, Child, Disease Models, Animal, Fibroblast Growth Factors, Humans, Kidney Tubules, Proximal, Male, Mice, Mice, Transgenic, Nephrotic Syndrome, Parathyroid Hormone, Phosphates, Prospective Studies, Proteinuria, Rats, Rats, Wistar, Sensitivity and Specificity, Sodium-Phosphate Cotransporter Proteins, Type IIa, Tetrazoles, Urinalysis
Show Abstract · Added December 26, 2018
Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease.
Copyright © 2015 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
MeSH Terms
Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial.
Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, Linette GP, Gajewski TF, Lutzky J, Lawson DH, Lao CD, Flynn PJ, Albertini MR, Sato T, Lewis K, Doyle A, Ancell K, Panageas KS, Bluth M, Hedvat C, Erinjeri J, Ambrosini G, Marr B, Abramson DH, Dickson MA, Wolchok JD, Chapman PB, Schwartz GK
(2014) JAMA 311: 2397-405
MeSH Terms: Adult, Aged, Aged, 80 and over, Antineoplastic Agents, Alkylating, Benzimidazoles, Dacarbazine, Disease Progression, Female, Humans, Male, Melanoma, Middle Aged, Survival Analysis, Temozolomide, Treatment Outcome, Uveal Neoplasms
Show Abstract · Added June 27, 2014
IMPORTANCE - Uveal melanoma is characterized by mutations in GNAQ and GNA11, resulting in mitogen-activated protein kinase pathway activation.
OBJECTIVE - To assess the efficacy of selumetinib, a selective, non-adenosine triphosphate competitive inhibitor of MEK1 and MEK2, in uveal melanoma.
DESIGN, SETTING, AND PARTICIPANTS - Randomized, open-label, phase 2 clinical trial comparing selumetinib vs chemotherapy conducted from August 2010 through December 2013 among 120 patients with metastatic uveal melanoma at 15 academic oncology centers in the United States and Canada.
INTERVENTIONS - One hundred one patients were randomized in a 1:1 ratio to receive selumetinib, 75 mg orally twice daily on a continual basis (n = 50), or chemotherapy (temozolomide, 150 mg/m2 orally daily for 5 of every 28 days, or dacarbazine, 1000 mg/m2 intravenously every 21 days [investigator choice]; n = 51) until disease progression, death, intolerable adverse effects, or withdrawal of consent. After primary outcome analysis, 19 patients were registered and 18 treated with selumetinib without randomization to complete the planned 120-patient enrollment. Patients in the chemotherapy group could receive selumetinib at the time of radiographic progression.
MAIN OUTCOMES AND MEASURES - Progression-free survival, the primary end point, was assessed as of April 22, 2013. Additional end points, including overall survival, response rate, and safety/toxicity, were assessed as of December 31, 2013.
RESULTS - Median progression-free survival among patients randomized to chemotherapy was 7 weeks (95% CI, 4.3-8.4 weeks; median treatment duration, 8 weeks; interquartile range [IQR], 4.3-16 weeks) and among those randomized to selumetinib was 15.9 weeks (95% CI, 8.4-21.1 weeks; median treatment duration, 16.1 weeks; IQR, 8.1-25.3 weeks) (hazard ratio, 0.46; 95% CI, 0.30-0.71; P < .001). Median overall survival time was 9.1 months (95% CI, 6.1-11.1 months) with chemotherapy and 11.8 months (95% CI, 9.8-15.7 months) with selumetinib (hazard ratio, 0.66; 95% CI, 0.41-1.06; P = .09). No objective responses were observed with chemotherapy. Forty-nine percent of patients treated with selumetinib achieved tumor regression, with 14% achieving an objective radiographic response to therapy. Treatment-related adverse events were observed in 97% of patients treated with selumetinib, with 37% requiring at least 1 dose reduction.
CONCLUSIONS AND RELEVANCE - In this hypothesis-generating study of patients with advanced uveal melanoma, selumetinib compared with chemotherapy resulted in a modestly improved progression-free survival and response rate; however, no improvement in overall survival was observed. Improvement in clinical outcomes was accompanied by a high rate of adverse events.
TRIAL REGISTRATION - clinicaltrials.gov Identifier: NCT01143402.
0 Communities
1 Members
0 Resources
16 MeSH Terms
A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators.
Lai YC, Kviklyte S, Vertommen D, Lantier L, Foretz M, Viollet B, Hallén S, Rider MH
(2014) Biochem J 460: 363-75
MeSH Terms: AMP-Activated Protein Kinases, Acetyl-CoA Carboxylase, Aminoimidazole Carboxamide, Animals, Benzimidazoles, Enzyme Activation, Fatty Acids, Glucose, Glycogen, Male, Mice, Muscle Contraction, Muscle, Skeletal, Pyrones, Rats, Ribonucleotides, Thiophenes
Show Abstract · Added August 18, 2014
AMPK (AMP-activated protein kinase) is an attractive therapeutic drug target for treating metabolic disorders. We studied the effects of an AMPK activator developed by Merck (ex229 from patent application WO2010036613), comparing chemical activation with contraction in intact incubated skeletal muscles. We also compared effects of ex229 with those of the Abbott A769662 compound and AICAR (5-amino-4-imidazolecarboxamide riboside). In rat epitrochlearis muscle, ex229 dose-dependently increased AMPK activity of α1-, α2-, β1- and β2-containing complexes with significant increases in AMPK activity seen at a concentration of 50 μM. At a concentration of 100 μM, AMPK activation was similar to that observed after contraction and importantly led to an ~2-fold increase in glucose uptake. In AMPK α1-/α2-catalytic subunit double-knockout myotubes incubated with ex229, the increases in glucose uptake and ACC (acetyl-CoA carboxylase) phosphorylation seen in control cells were completely abolished, suggesting that the effects of the compound were AMPK-dependent. When muscle glycogen levels were reduced by ~50% after starvation, ex229-induced AMPK activation and glucose uptake were amplified in a wortmannin-independent manner. In L6 myotubes incubated with ex229, fatty acid oxidation was increased. Furthermore, in mouse EDL (extensor digitorum longus) and soleus muscles, ex229 increased both AMPK activity and glucose uptake at least 2-fold. In summary, ex229 efficiently activated skeletal muscle AMPK and elicited metabolic effects in muscle appropriate for treating Type 2 diabetes by stimulating glucose uptake and increasing fatty acid oxidation.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence.
Stavros KM, Hawkins EK, Rizzo CJ, Stone MP
(2014) Nucleic Acids Res 42: 3450-63
MeSH Terms: Aminoquinolines, Base Sequence, Benzimidazoles, DNA, DNA Adducts, Deoxyribonucleases, Type II Site-Specific, Models, Molecular, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Oligodeoxyribonucleotides, Protons
Show Abstract · Added March 10, 2014
2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5'- and 3'-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a 'base-displaced intercalated' conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson-Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.
0 Communities
2 Members
0 Resources
11 MeSH Terms