Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 176

Publication Record

Connections

Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers.
Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, Albert R, Lopez CF, Sage J, Quaranta V
(2019) PLoS Comput Biol 15: e1007343
MeSH Terms: Algorithms, Animals, Basic Helix-Loop-Helix Transcription Factors, Bayes Theorem, Cell Line, Tumor, Cluster Analysis, Databases, Genetic, Drug Resistance, Neoplasm, Gene Expression, Gene Expression Regulation, Neoplastic, Gene Ontology, Gene Regulatory Networks, Humans, Mice, Models, Theoretical, Small Cell Lung Carcinoma, Systems Analysis, Transcription Factors
Show Abstract · Added March 30, 2020
Adopting a systems approach, we devise a general workflow to define actionable subtypes in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four subtypes based on global gene expression patterns and ontologies. Three correspond to known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously undescribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with subtype gene signatures shows that all of the subtypes are detectable in varying proportions in human and mouse tumors. To understand how multiple stable subtypes can arise within a tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-constrained Boolean rule-fitting approach. In silico perturbations of the network identify master regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer. Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sensitive, these findings may lead to actionable therapeutic strategies that consider SCLC intratumoral heterogeneity. Our systems-level approach should generalize to other cancer types.
0 Communities
1 Members
0 Resources
MeSH Terms
Hypoxia-inducible factors in CD4 T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity.
Cho SH, Raybuck AL, Blagih J, Kemboi E, Haase VH, Jones RG, Boothby MR
(2019) Proc Natl Acad Sci U S A 116: 8975-8984
MeSH Terms: Animals, Antibody Formation, B-Lymphocytes, Basic Helix-Loop-Helix Transcription Factors, CD4-Positive T-Lymphocytes, Cell Hypoxia, Cytokines, Germinal Center, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Immunity, Humoral, Immunization, Lymphocyte Activation, Mice, Mice, Inbred C57BL, Mice, Transgenic, Receptors, CXCR5, Sheep, T-Lymphocytes, Helper-Inducer
Show Abstract · Added April 23, 2019
T cell help in humoral immunity includes interactions of B cells with activated extrafollicular CD4 and follicular T helper (Tfh) cells. Each can promote antibody responses but Tfh cells play critical roles during germinal center (GC) reactions. After restimulation of their antigen receptor (TCR) by B cells, helper T cells act on B cells via CD40 ligand and secreted cytokines that guide Ig class switching. Hypoxia is a normal feature of GC, raising questions about molecular mechanisms governing the relationship between hypoxia response mechanisms and T cell help to antibody responses. Hypoxia-inducible factors (HIF) are prominent among mechanisms that mediate cellular responses to limited oxygen but also are induced by lymphocyte activation. We now show that loss of HIF-1α or of both HIF-1α and HIF-2α in CD4 T cells compromised essential functions in help during antibody responses. HIF-1α depletion from CD4 T cells reduced frequencies of antigen-specific GC B cells, Tfh cells, and overall antigen-specific Ab after immunization with sheep red blood cells. Compound deficiency of HIF-1α and HIF-2α led to humoral defects after hapten-carrier immunization. Further, HIF promoted CD40L expression while restraining the FoxP3-positive CD4 cells in the CXCR5 follicular regulatory population. Glycolysis increases T helper cytokine expression, and HIF promoted glycolysis in T helper cells via TCR or cytokine stimulation, as well as their production of cytokines that direct antibody class switching. Indeed, IFN-γ elaboration by HIF-deficient in vivo-generated Tfh cells was impaired. Collectively, the results indicate that HIF transcription factors are vital components of the mechanisms of help during humoral responses.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity.
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G
(2019) Dev Cell 48: 49-63.e7
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Lineage, Endocrine Cells, Homeodomain Proteins, Insulin-Secreting Cells, Islets of Langerhans, Mice, Nerve Tissue Proteins, Organogenesis, Pancreas, Transcription Factors
Show Abstract · Added February 6, 2019
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3 cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3 cells co-expressing Myt1 (i.e., Myt1Neurog3) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1Neurog3) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1Neurog3 cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
13 MeSH Terms
Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer.
Lehman JM, Hoeksema MD, Staub J, Qian J, Harris B, Callison JC, Miao J, Shi C, Eisenberg R, Chen H, Chen SC, Massion PP
(2019) Int J Cancer 144: 1104-1114
MeSH Terms: AMP-Activated Protein Kinases, Animals, Apoptosis, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Cell Line, Tumor, Cell Proliferation, Disease Progression, Down-Regulation, Humans, Lung Neoplasms, Mice, Mice, Nude, Nerve Tissue Proteins, RNA, Messenger, Receptors, Somatostatin, Signal Transduction, Small Cell Lung Carcinoma
Show Abstract · Added March 31, 2020
Somatostatin receptor 2 (SSTR2) is overexpressed in a majority of neuroendocrine neoplasms, including small-cell lung carcinomas (SCLCs). SSTR2 was previously considered an inhibitory receptor on cell growth, but its agonists had poor clinical responses in multiple clinical trials. The role of this receptor as a potential therapeutic target in lung cancer merits further investigation. We evaluated the expression of SSTR2 in a cohort of 96 primary tumors from patients with SCLC and found 48% expressed SSTR2. Correlation analysis in both CCLE and an SCLC RNAseq cohort confirmed high-level expression and identified an association between NEUROD1 and SSTR2. There was a significant association with SSTR2 expression profile and poor clinical outcome. We tested whether SSTR2 expression might contribute to tumor progression through activation of downstream signaling pathways, using in vitro and in vivo systems and downregulated SSTR2 expression in lung cancer cells by shRNA. SSTR2 downregulation led to increased apoptosis and dramatically decreased tumor growth in vitro and in vivo in multiple cell lines with decreased AMPKα phosphorylation and increased oxidative metabolism. These results demonstrate a role for SSTR2 signaling in SCLC and suggest that SSTR2 is a poor prognostic biomarker in SCLC and potential future therapeutic signaling target.
© 2018 UICC.
0 Communities
1 Members
0 Resources
MeSH Terms
ROCK-nmMyoII, Notch and gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche.
Bankaitis ED, Bechard ME, Gu G, Magnuson MA, Wright CVE
(2018) Development 145:
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Movement, Endocrine Cells, Gene Dosage, Mice, Mice, Transgenic, Nerve Tissue Proteins, Organogenesis, Pancreas, Receptors, Notch, Stem Cells, Transcriptional Activation, rho-Associated Kinases
Show Abstract · Added August 24, 2018
During mouse pancreas organogenesis, endocrine cells are born from progenitors residing in an epithelial plexus niche. After a period in a lineage-primed state, progenitors become endocrine committed via upregulation of We find that the to transition is associated with distinct stages of an epithelial egression process: narrowing the apical surface of the cell, basalward cell movement and eventual cell-rear detachment from the apical lumen surface to allow clustering as nascent islets under the basement membrane. Apical narrowing, basalward movement and transcriptional upregulation still occur without Neurog3 protein, suggesting that morphogenetic cues deployed within the plexus initiate endocrine commitment upstream or independently of Neurog3. Neurog3 is required for cell-rear detachment and complete endocrine-cell birth. The ROCK-nmMyoII pathway coordinates epithelial-cell morphogenesis and the progression through -expressing states. NmMyoII is necessary for apical narrowing, basalward cell displacement and upregulation, but all three are limited by ROCK activity. We propose that ROCK-nmMyoII activity, gene-dose and Notch signaling integrate endocrine fate allocation with epithelial plexus growth and morphogenesis, representing a feedback control circuit that coordinates morphogenesis with lineage diversification in the endocrine-birth niche.
© 2018. Published by The Company of Biologists Ltd.
2 Communities
2 Members
0 Resources
15 MeSH Terms
Striking parallels between carotid body glomus cell and adrenal chromaffin cell development.
Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM, Ernfors P, Ehinger S, Howard MJ, Brown N, Reese J, Baker CVH
(2018) Dev Biol 444 Suppl 1: S308-S324
MeSH Terms: Adrenal Glands, Animals, Basic Helix-Loop-Helix Transcription Factors, Body Patterning, Carotid Body, Cell Differentiation, Cell Hypoxia, Chick Embryo, Chickens, Chromaffin Cells, Mice, Mice, Knockout, Myelin Proteolipid Protein, Neural Crest, Neurons, Pericytes, Transcription Factors
Show Abstract · Added May 30, 2018
Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are 'émigrés' from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the 'émigré' hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas.
Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C, Cancer Genome Atlas Network
(2018) Cell Syst 6: 282-300.e2
MeSH Terms: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Carcinogenesis, Chromatin, Computational Biology, Genes, myc, Genomics, Humans, Neoplasms, Oncogenes, Proteomics, Proto-Oncogene Proteins c-myc, Repressor Proteins, Signal Transduction, Transcription Factors
Show Abstract · Added October 30, 2019
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut.
Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT, Franklin JL, Liu Q, Gerdes MJ, Coffey RJ, Lau KS
(2018) Cell Syst 6: 37-51.e9
MeSH Terms: Algorithms, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Lineage, Humans, Image Cytometry, Intestinal Mucosa, Intestine, Small, K562 Cells, Mice, Mice, Inbred C57BL, RNA, Sequence Analysis, RNA, Single-Cell Analysis
Show Abstract · Added April 3, 2018
Modern single-cell technologies allow multiplexed sampling of cellular states within a tissue. However, computational tools that can infer developmental cell-state transitions reproducibly from such single-cell data are lacking. Here, we introduce p-Creode, an unsupervised algorithm that produces multi-branching graphs from single-cell data, compares graphs with differing topologies, and infers a statistically robust hierarchy of cell-state transitions that define developmental trajectories. We have applied p-Creode to mass cytometry, multiplex immunofluorescence, and single-cell RNA-seq data. As a test case, we validate cell-state-transition trajectories predicted by p-Creode for intestinal tuft cells, a rare, chemosensory cell type. We clarify that tuft cells are specified outside of the Atoh1-dependent secretory lineage in the small intestine. However, p-Creode also predicts, and we confirm, that tuft cells arise from an alternative, Atoh1-driven developmental program in the colon. These studies introduce p-Creode as a reliable method for analyzing large datasets that depict branching transition trajectories.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
15 MeSH Terms
EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity.
Löf-Öhlin ZM, Nyeng P, Bechard ME, Hess K, Bankaitis E, Greiner TU, Ameri J, Wright CV, Semb H
(2017) Nat Cell Biol 19: 1313-1325
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Polarity, Epithelial Cells, ErbB Receptors, Insulin-Secreting Cells, Mice, Mice, Knockout, Morphogenesis, Nerve Tissue Proteins, Neuropeptides, Organogenesis, Phosphatidylinositol 3-Kinases, Protein Kinase C, Signal Transduction, rac1 GTP-Binding Protein
Show Abstract · Added November 7, 2017
Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction. Subsequently, betacellulin, working via inhibition of atypical protein kinase C (aPKC), causes apical domain constriction within neurogenin3 endocrine progenitors, which results in reduced Notch signalling, increased neurogenin3 expression, and β-cell differentiation. Notably, the ligand-specific EGFR output is not driven at the ligand level, but seems to have evolved in response to stage-specific epithelial influences. The EGFR-mediated control of β-cell differentiation via apical polarity is also conserved in human neurogenin3 cells. We provide insight into how ligand-specific EGFR signalling coordinates epithelial morphogenesis and cell differentiation via apical polarity dynamics.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development.
Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH
(2017) Kidney Int 92: 1370-1383
MeSH Terms: Anemia, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Hypoxia, Clinical Trials, Phase III as Topic, Disease Models, Animal, Enzyme Inhibitors, Forkhead Transcription Factors, Humans, Hydroxylation, Hypoxia-Inducible Factor-Proline Dioxygenases, Kidney, Kidney Diseases, Mice, Molecular Targeted Therapy, Mutation, Organ Size, Procollagen-Proline Dioxygenase, Renal Insufficiency, Stromal Cells
Show Abstract · Added November 21, 2017
Hypoxia in the embryo is a frequent cause of intra-uterine growth retardation, low birth weight, and multiple organ defects. In the kidney, this can lead to low nephron endowment, predisposing to chronic kidney disease and arterial hypertension. A key component in cellular adaptation to hypoxia is the hypoxia-inducible factor pathway, which is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3. In the adult kidney, PHD oxygen sensors are differentially expressed in a cell type-dependent manner and control the production of erythropoietin in interstitial cells. However, the role of interstitial cell PHDs in renal development has not been examined. Here we used a genetic approach in mice to interrogate PHD function in FOXD1-expressing stroma during nephrogenesis. We demonstrate that PHD2 and PHD3 are essential for normal kidney development as the combined inactivation of stromal PHD2 and PHD3 resulted in renal failure that was associated with reduced kidney size, decreased numbers of glomeruli, and abnormal postnatal nephron formation. In contrast, nephrogenesis was normal in animals with individual PHD inactivation. We furthermore demonstrate that the defect in nephron formation in PHD2/PHD3 double mutants required intact hypoxia-inducible factor-2 signaling and was dependent on the extent of stromal hypoxia-inducible factor activation. Thus, hypoxia-inducible factor prolyl-4-hydroxylation in renal interstitial cells is critical for normal nephron formation.
Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms