Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 67

Publication Record


Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture.
Cheng FY, Fleming JT, Chiang C
(2018) Dev Biol 440: 152-166
MeSH Terms: Animals, Astrocytes, Cell Differentiation, Cell Division, Cell Proliferation, Cells, Cultured, Cerebellar Cortex, Cerebellar Neoplasms, Cerebellum, Developmental Disabilities, Hedgehog Proteins, Mice, Nervous System Malformations, Neural Stem Cells, Neuroglia, Neurons, Purkinje Cells, Signal Transduction, Wnt Signaling Pathway
Show Abstract · Added April 10, 2019
Neuronal-glial relationships play a critical role in the maintenance of central nervous system architecture and neuronal specification. A deeper understanding of these relationships can elucidate cellular cross-talk capable of sustaining proper development of neural tissues. In the cerebellum, cerebellar granule neuron precursors (CGNPs) proliferate in response to Purkinje neuron-derived Sonic hedgehog (Shh) before ultimately exiting the cell cycle and migrating radially along Bergmann glial fibers. However, the function of Bergmann glia in CGNP proliferation remains not well defined. Interestingly, the Hh pathway is also activated in Bergmann glia, but the role of Shh signaling in these cells is unknown. In this study, we show that specific ablation of Shh signaling using the tamoxifen-inducible TNC line to eliminate Shh pathway activator Smoothened in Bergmann glia is sufficient to cause severe cerebellar hypoplasia and a significant reduction in CGNP proliferation. TNC; Smo (Smo) mice demonstrate an obvious reduction in cerebellar size within two days of ablation of Shh signaling. Mutant cerebella have severely reduced proliferation and increased differentiation of CGNPs due to a significant decrease in Shh activity and concomitant activation of Wnt signaling in Smo CGNPs, suggesting that this pathway is involved in cross-talk with the Shh pathway in regulating CGNP proliferation. In addition, Purkinje cells are ectopically located, their dendrites stunted, and the Bergmann glial network disorganized. Collectively, these data demonstrate a previously unappreciated role for Bergmann glial Shh signaling activity in the proliferation of CGNPs and proper maintenance of cerebellar architecture.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.
Dos Santos AA, López-Granero C, Farina M, Rocha JBT, Bowman AB, Aschner M
(2018) Food Chem Toxicol 113: 328-336
MeSH Terms: Animals, Astrocytes, Caspase 3, Caspase 9, Cell Death, Cells, Cultured, Enzyme Activation, Lim Kinases, Methylmercury Compounds, Mice, Inbred C57BL, Myosin-Light-Chain Phosphatase, Oxidative Stress, Phosphorylation, Proteolysis, rho-Associated Kinases
Show Abstract · Added April 11, 2018
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Copyright © 2018. Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES
(2017) Fluids Barriers CNS 14: 9
MeSH Terms: Astrocytes, Blood-Brain Barrier, Cell Differentiation, Cell Line, Culture Media, Culture Techniques, Endothelial Cells, Humans, Immunohistochemistry, Induced Pluripotent Stem Cells, Male, Pericytes, Time Factors
Show Abstract · Added April 26, 2017
BACKGROUND - Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods.
METHODS - Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines.
RESULTS - The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm and fluorescein permeability below 1.95 × 10 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson's Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm, which to our knowledge is the highest reported in vitro TEER value to date.
CONCLUSIONS - Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma.
Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML
(2016) Exp Eye Res 150: 34-43
MeSH Terms: Animals, Astrocytes, Axons, Chronic Disease, Disease Models, Animal, Female, Glaucoma, Gliosis, Male, Mice, Mice, Inbred DBA, Microscopy, Confocal, Neuroglia, Optic Nerve, Optic Nerve Diseases, Photomicrography, Retinal Ganglion Cells
Show Abstract · Added February 8, 2016
Within the white matter, axonal loss by neurodegeneration is coupled to glial cell changes in gene expression, structure and function commonly termed gliosis. Recently, we described the highly variable expansion of gliosis alebosco@neuro.utah.edu in degenerative optic nerves from the DBA/2J mouse model of chronic, age-related glaucoma. Here, to estimate and compare the levels of axonal loss with the expansion of glial coverage and axonal degeneration in DBA/2J nerves, we combined semiautomatic axon counts with threshold-based segmentation of total glial/scar areas and degenerative axonal profiles in plastic cross-sections. In nerves ranging from mild to severe degeneration, we found that the progression of axonal dropout is coupled to an increase of gliotic area. We detected a strong correlation between axon loss and the aggregate coverage by glial cells and scar, whereas axon loss did not correlate with the small fraction of degenerating profiles. Nerves with low to medium levels of axon loss displayed moderate glial reactivity, consisting of hypertrophic astrocytes, activated microglia and normal distribution of oligodendrocytes, with minimal reorganization of the tissue architecture. In contrast, nerves with extensive axonal loss showed prevalent rearrangement of the nerve, with loss of axon fascicle territories and enlarged or almost continuous gliotic and scar domains, containing reactive astrocytes, oligodendrocytes and activated microglia. These findings support the value of optic nerve gliotic expansion as a quantitative estimate of optic neuropathy that correlates with axon loss, applicable to grade the severity of optic nerve damage in mouse chronic glaucoma.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Bone morphogenetic protein signaling promotes tumorigenesis in a murine model of high-grade glioma.
Hover LD, Owens P, Munden AL, Wang J, Chambless LB, Hopkins CR, Hong CC, Moses HL, Abel TW
(2016) Neuro Oncol 18: 928-38
MeSH Terms: Animals, Astrocytes, Bone Morphogenetic Protein Receptors, Type I, Bone Morphogenetic Proteins, Carcinogenesis, Cell Proliferation, Cell Transformation, Neoplastic, Gene Expression Regulation, Glioma, Mice, Transgenic, Signal Transduction
Show Abstract · Added December 20, 2015
BACKGROUND - Improved therapies for high-grade glioma (HGG) are urgently needed as the median survival for grade IV gliomas is only 15 months. Bone morphogenetic protein (BMP) signaling plays critical and complex roles in many types of cancer, including glioma, with most of the recently published work focusing on BMP-mediated regulation of glioma stem cells (GSCs). We hypothesized that BMP signaling may be an important modulator of tumorigenic properties in glioma cells outside of the GSC compartment.
METHODS - We used a human HGG tissue microarray and performed immunohistochemistry for phospho-Smads1,5,8. To examine the role of BMP signaling in tumorigenic astrocytes, transgenic mice were used to delete the BMP type IA receptor (Bmpr1a) and generate astrocytes transformed with oncogenic Ras and homozygous deletion of p53. The cells were transplanted orthotopically into immunocompetent adult host mice.
RESULTS - First we established that BMP signaling is active within the vast majority of HGG tumor cells. Mice implanted with BMPR1a-knockout transformed astrocytes showed an increase in median survival compared with mice that received BMPR1a-intact transformed astrocytes (52.5 vs 16 days). In vitro analysis showed that deletion of BMPR1a in oncogenic astrocytes resulted in decreased proliferation, decreased invasion, decreased migration, and increased expression of stemness markers. In addition, inhibition of BMP signaling in murine cells and astrocytoma cells with a small molecule BMP receptor kinase inhibitor resulted in similar tumor suppressive effects in vitro.
CONCLUSION - BMP inhibition may represent a viable therapeutic approach in adult HGG.
© The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2 Communities
5 Members
0 Resources
11 MeSH Terms
Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2J mouse model of glaucoma.
Cooper ML, Crish SD, Inman DM, Horner PJ, Calkins DJ
(2016) Exp Eye Res 150: 22-33
MeSH Terms: Animals, Astrocytes, Axons, Disease Models, Animal, Glaucoma, Open-Angle, Imaging, Three-Dimensional, Mice, Mice, Inbred DBA, Nerve Degeneration, Optic Nerve, Optic Nerve Diseases, Photomicrography, Retinal Ganglion Cells, Time Factors
Show Abstract · Added February 8, 2016
Glaucoma challenges the survival of retinal ganglion cell axons in the optic nerve through processes dependent on both aging and ocular pressure. Relevant stressors likely include complex interplay between axons and astrocytes, both in the retina and optic nerve. In the DBA/2J mouse model of pigmentary glaucoma, early progression involves axonopathy characterized by loss of functional transport prior to outright degeneration. Here we describe novel features of early pathogenesis in the DBA/2J nerve. With age the cross-sectional area of the nerve increases; this is associated generally with diminished axon packing density and survival and increased glial coverage of the nerve. However, for nerves with the highest axon density, as the nerve expands mean cross-sectional axon area enlarges as well. This early expansion was marked by disorganized axoplasm and accumulation of hyperphosphorylated neurofilamants indicative of axonopathy. Axon expansion occurs without loss up to a critical threshold for size (about 0.45-0.50 μm(2)), above which additional expansion tightly correlates with frank loss of axons. As well, early axon expansion prior to degeneration is concurrent with decreased astrocyte ramification with redistribution of processes towards the nerve edge. As axons expand beyond the critical threshold for loss, glial area resumes an even distribution from the center to edge of the nerve. We also found that early axon expansion is accompanied by reduced numbers of mitochondria per unit area in the nerve. Finally, our data indicate that both IOP and nerve expansion are associated with axon enlargement and reduced axon density for aged nerves. Collectively, our data support the hypothesis that diminished bioenergetic resources in conjunction with early nerve and glial remodeling could be a primary inducer of progression of axon pathology in glaucoma.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.
Nickols HH, Yuh JP, Gregory KJ, Morrison RD, Bates BS, Stauffer SR, Emmitte KA, Bubser M, Peng W, Nedelcovych MT, Thompson A, Lv X, Xiang Z, Daniels JS, Niswender CM, Lindsley CW, Jones CK, Conn PJ
(2016) J Pharmacol Exp Ther 356: 123-36
MeSH Terms: Allosteric Regulation, Animals, Anti-Anxiety Agents, Astrocytes, Behavior, Animal, Brain, Dose-Response Relationship, Drug, Drug Discovery, GABA Agonists, HEK293 Cells, Humans, Inositol Phosphates, MAP Kinase Signaling System, Membrane Potentials, Mice, Mice, Inbred C57BL, Picolinic Acids, Pyridines, Radioligand Assay, Rats, Receptor, Metabotropic Glutamate 5, Synaptic Transmission
Show Abstract · Added February 18, 2016
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.
Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Regulation of orexigenic AgRP neurons: A third way?
Bingham NC, Cone RD
(2015) Trends Endocrinol Metab 26: 339-40
MeSH Terms: Agouti-Related Protein, Animals, Astrocytes, Neurons, Receptor, Adenosine A1
Show Abstract · Added October 13, 2015
Arcuate AgRP neurons are critical for food intake. Two pathways leading to AgRP neuron activation and food intake include regulation by peripheral hormones leptin and ghrelin, and neuronal regulation via glutamatergic inputs. In a recent article in Cell Reports, Yang et al. demonstrate 'a third way,' regulation by resident astrocytes.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
5 MeSH Terms
Toward a Broader View of Ube3a in a Mouse Model of Angelman Syndrome: Expression in Brain, Spinal Cord, Sciatic Nerve and Glial Cells.
Grier MD, Carson RP, Lagrange AH
(2015) PLoS One 10: e0124649
MeSH Terms: Alleles, Angelman Syndrome, Animals, Astrocytes, Brain, Cell Extracts, Cells, Cultured, Disease Models, Animal, Female, Gene Silencing, Genomic Imprinting, Humans, Male, Mice, Mice, Inbred C57BL, Neuroglia, Oligodendroglia, Sciatic Nerve, Spinal Cord, Time Factors, Ubiquitin-Protein Ligases
Show Abstract · Added March 14, 2018
Angelman Syndrome (AS) is a devastating neurodevelopmental disorder characterized by developmental delay, speech impairment, movement disorder, sleep disorders and refractory epilepsy. AS is caused by loss of the Ube3a protein encoded for by the imprinted Ube3a gene. Ube3a is expressed nearly exclusively from the maternal chromosome in mature neurons. While imprinting in neurons of the brain has been well described, the imprinting and expression of Ube3a in other neural tissues remains relatively unexplored. Moreover, given the overwhelming deficits in brain function in AS patients, the possibility of disrupted Ube3a expression in the infratentorial nervous system and its consequent disability have been largely ignored. We evaluated the imprinting status of Ube3a in the spinal cord and sciatic nerve and show that it is also imprinted in these neural tissues. Furthermore, a growing body of clinical and radiological evidence has suggested that myelin dysfunction may contribute to morbidity in many neurodevelopmental syndromes. However, findings regarding Ube3a expression in non-neuronal cells of the brain have varied. Utilizing enriched primary cultures of oligodendrocytes and astrocytes, we show that Ube3a is expressed, but not imprinted in these cell types. Unlike many other neurodevelopmental disorders, AS symptoms do not become apparent until roughly 6 to 12 months of age. To determine the temporal expression pattern and silencing, we analyzed Ube3a expression in AS mice at several time points. We confirm relaxed imprinting of Ube3a in neurons of the postnatal developing cortex, but not in structures in which neurogenesis and migration are more complete. This furthers the hypothesis that the apparently normal window of development in AS patients is supported by an incompletely silenced paternal allele in developing neurons, resulting in a relative preservation of Ube3a expression during this crucial epoch of early development.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia.
Brown JA, Sherrod SD, Goodwin CR, Brewer B, Yang L, Garbett KA, Li D, McLean JA, Wikswo JP, Mirnics K
(2014) J Neuroinflammation 11: 183
MeSH Terms: Animals, Astrocytes, Cells, Cultured, Female, Interleukin-6, Male, Mice, Mice, Inbred C57BL, Microfluidic Analytical Techniques, Neurons
Show Abstract · Added February 2, 2015
BACKGROUND - Maternal immune activation and subsequent interleukin-6 (IL-6) induction disrupt normal brain development and predispose the offspring to developing autism and schizophrenia. While several proteins have been identified as having some link to these developmental disorders, their prevalence is still small and their causative role, if any, is not well understood. However, understanding the metabolic consequences of environmental predisposing factors could shed light on disorders such as autism and schizophrenia.
METHODS - To gain a better understanding of the metabolic consequences of IL-6 exposure on developing central nervous system (CNS) cells, we separately exposed developing neuron and astroglia cultures to IL-6 for 2 hours while collecting effluent from our gravity-fed microfluidic chambers. By coupling microfluidic technologies to ultra-performance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS), we were able to characterize the metabolic response of these CNS cells to a narrow window of IL-6 exposure.
RESULTS - Our results revealed that 1) the use of this technology, due to its superb media volume:cell volume ratio, is ideally suited for analysis of cell-type-specific exometabolome signatures; 2) developing neurons have low secretory activity at baseline, while astroglia show strong metabolic activity; 3) both neurons and astroglia respond to IL-6 exposure in a cell type-specific fashion; 4) the astroglial response to IL-6 stimulation is predominantly characterized by increased levels of metabolites, while neurons mostly depress their metabolic activity; and 5) disturbances in glycerophospholipid metabolism and tryptophan/kynurenine metabolite secretion are two putative mechanisms by which IL-6 affects the developing nervous system.
CONCLUSIONS - Our findings are potentially critical for understanding the mechanism by which IL-6 disrupts brain function, and they provide information about the molecular cascade that links maternal immune activation to developmental brain disorders.
2 Communities
3 Members
0 Resources
10 MeSH Terms