Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 138

Publication Record

Connections

Polymer gel dosimetry by nuclear Overhauser enhancement (NOE) magnetic resonance imaging.
Quevedo A, Luo G, Galhardo E, Price M, Nicolucci P, Gore JC, Zu Z
(2018) Phys Med Biol 63: 15NT03
MeSH Terms: Ascorbic Acid, Copper Sulfate, Gelatin, Hydroquinones, Magnetic Resonance Imaging, Methacrylates, Polymers, Radiation Dosimeters, Radiometry
Show Abstract · Added March 26, 2019
The response to radiation of polymer gel dosimeters has previously been measured by magnetic resonance imaging (MRI) in terms of changes in the water transverse relaxation rate (R ) or magnetization transfer (MT) parameters. Here we report a new MRI approach, based on detecting nuclear Overhauser enhancement (NOE) mediated saturation transfer effects, which can also be used to detect radiation and measure dose distributions in MAGIC-f (Methacrylic and Ascorbic Acid and Gelatin Initiated by Copper Solution with formaldehyde) polymer gels. Results show that the NOE effects produced by low powered radiofrequency (RF) irradiation at specific frequencies offset from water may be quantified by appropriate measurements and over a useful range depend linearly on the radiation dose. The NOE effect likely arises from the polymerization of methacrylic acid monomers which become less mobile, facilitating dipolar through-space cross-relaxation and/or relayed magnetization exchange between polymer and water protons. Our study suggests a potential new MRI method for polymer gel dosimetry.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Antioxidant supplementation and atrial arrhythmias in critically ill trauma patients.
Mirhoseini MF, Hamblin SE, Moore WP, Pouliot J, Jenkins JM, Wang W, Chandrasekhar R, Collier BR, Patel MB
(2018) J Surg Res 222: 10-16
MeSH Terms: Adult, Antioxidants, Arrhythmias, Cardiac, Ascorbic Acid, Critical Care, Critical Illness, Dietary Supplements, Female, Humans, Male, Middle Aged, Oxidative Stress, Retrospective Studies, Selenium, Trauma Centers, Vitamin D, Wounds and Injuries
Show Abstract · Added June 26, 2018
BACKGROUND - The purpose of this study is to determine if antioxidant supplementation influences the incidence of atrial arrhythmias in trauma intensive care unit (ICU) patients.
MATERIALS AND METHODS - In this retrospective pre-post study, critically ill injured patients aged ≥18 years, admitted to a single-center trauma ICU for ≥48 hours were eligible for inclusion. The control group consists of patients admitted from January 2000 to September 2005, before routine antioxidant supplementation in our ICU. The antioxidant group consists of patients admitted from October 2005 to June 2011 who received an antioxidant protocol for ≥48 hours. The primary outcome is the incidence of atrial arrhythmias in the first 2 weeks of hospitalization or before discharge.
RESULTS - Of the 4699 patients, 1622 patients were in the antioxidant group and 2414 patients were in the control group. Adjusted for age, sex, year, injury severity, past medical history, and medication administration, the unadjusted incidence of atrial arrhythmias was 3.02% in the antioxidant group versus 3.31% in the control group, with no adjusted difference in atrial arrhythmias among those exposed to antioxidants (odds ratio: 1.31 [95% confidence interval: 0.46, 3.75], P = 0.62). Although there was no change in overall mortality, the expected adjusted survival of patients in those without antioxidant therapy was lower (odds ratio: 0.65 [95% confidence interval: 0.43, 0.97], P = 0.04).
CONCLUSIONS - ICU antioxidant supplementation did not decrease the incidence of atrial arrhythmias, nor alter the time from admission to development of arrhythmia. A longer expected survival time was observed in the antioxidant group compared with the control group but without a change in overall mortality between groups.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.
Kuck JL, Bastarache JA, Shaver CM, Fessel JP, Dikalov SI, May JM, Ware LB
(2018) Biochem Biophys Res Commun 495: 433-437
MeSH Terms: Antioxidants, Ascorbic Acid, Capillary Permeability, Endothelium, Vascular, Hemoglobins, Human Umbilical Vein Endothelial Cells, Humans, Sepsis
Show Abstract · Added March 14, 2018
BACKGROUND - Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity.
METHODS - Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC.
RESULTS - CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability.
CONCLUSIONS - CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
8 MeSH Terms
Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate.
Dixit S, Fessel JP, Harrison FE
(2017) Free Radic Biol Med 112: 515-523
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Alzheimer Disease, Amyloid beta-Protein Precursor, Animals, Antioxidants, Ascorbic Acid, Biological Transport, Disease Models, Animal, Female, Gene Expression Regulation, Heterozygote, Humans, Male, Membrane Potential, Mitochondrial, Mice, Mice, Transgenic, Mitochondria, Mutation, Oxidative Stress, Oxygen Consumption, Presenilin-1, Reactive Oxygen Species, Signal Transduction, Sodium-Coupled Vitamin C Transporters
Show Abstract · Added March 14, 2018
Mitochondrial dysfunction is elevated in very early stages of Alzheimer's disease and exacerbates oxidative stress, which contributes to disease pathology. Mitochondria were isolated from 4-month-old wild-type mice, transgenic mice carrying the APP and PSEN1 mutations, mice with decreased brain and mitochondrial ascorbate (vitamin C) via heterozygous knockout of the sodium dependent vitamin C transporter (SVCT2) and transgenic APP/PSEN1 mice with heterozygous SVCT2 expression. Mitochondrial isolates from SVCT2 mice were observed to consume less oxygen using high-resolution respirometry, and also exhibited decreased mitochondrial membrane potential compared to wild type isolates. Conversely, isolates from young (4 months) APP/PSEN1 mice consumed more oxygen, and exhibited an increase in mitochondrial membrane potential, but had a significantly lower ATP/ADP ratio compared to wild type isolates. Greater levels of reactive oxygen species were also produced in mitochondria isolated from both APP/PSEN1 and SVCT2 mice compared to wild type isolates. Acute administration of ascorbate to mitochondria isolated from wild-type mice increased oxygen consumption compared with untreated mitochondria suggesting ascorbate may support energy production. This study suggests that both presence of amyloid and ascorbate deficiency can contribute to mitochondrial dysfunction, even at an early, prodromal stage of Alzheimer's disease, although occurring via different pathways. Ascorbate may, therefore, provide a useful preventative strategy against neurodegenerative disease, particularly in populations most at risk for Alzheimer's disease in which stores are often depleted through mitochondrial dysfunction and elevated oxidative stress.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Time-resolved Studies of IsdG Protein Identify Molecular Signposts along the Non-canonical Heme Oxygenase Pathway.
Streit BR, Kant R, Tokmina-Lukaszewska M, Celis AI, Machovina MM, Skaar EP, Bothner B, DuBois JL
(2016) J Biol Chem 291: 862-71
MeSH Terms: Ascorbic Acid, Chromatography, Liquid, Heme, Heme Oxygenase (Decyclizing), Humans, Hydrogen Peroxide, Isotopes, Kinetics, Mass Spectrometry, Oxygen, Oxygenases, Signal Transduction, Spectrophotometry, Ultraviolet, Staphylococcus aureus, Time Factors
Show Abstract · Added February 8, 2016
IsdGs are heme monooxygenases that break open the tetrapyrrole, releasing the iron, and thereby allowing bacteria expressing this protein to use heme as a nutritional iron source. Little is currently known about the mechanism by which IsdGs degrade heme, although the products differ from those generated by canonical heme oxygenases. A synthesis of time-resolved techniques, including in proteo mass spectrometry and conventional and stopped-flow UV/visible spectroscopy, was used in conjunction with analytical methods to define the reaction steps mediated by IsdG from Staphylococcus aureus and their time scales. An apparent meso-hydroxyheme (forming with k = 0.6 min(-1), pH 7.4, 10 mm ascorbate, 10 μm IsdG-heme, 22 °C) was identified as a likely common intermediate with the canonical heme oxygenases. Unlike heme oxygenases, this intermediate does not form with added H2O2 nor does it convert to verdoheme and CO. Rather, the next observable intermediates (k = 0.16 min(-1)) were a set of formyloxobilin isomers, similar to the mycobilin products of the IsdG homolog from Mycobacterium tuberculosis (MhuD). These converted in separate fast and slow phases to β-/δ-staphylobilin isomers and formaldehyde (CH2O). Controlled release of this unusual C1 product may support IsdG's dual role as both an oxygenase and a sensor of heme availability in S. aureus.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice.
Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES, Harrison FE
(2015) ACS Chem Neurosci 6: 570-81
MeSH Terms: Aging, Alzheimer Disease, Amyloid beta-Peptides, Amyloid beta-Protein Precursor, Animals, Anxiety, Ascorbic Acid, Ascorbic Acid Deficiency, Brain, Cognition Disorders, Disease Models, Animal, Female, Learning, Male, Memory, Mice, Transgenic, Motor Activity, Oxidative Stress, Peptide Fragments, Presenilin-1, Sodium-Coupled Vitamin C Transporters
Show Abstract · Added May 11, 2015
Subclinical vitamin C deficiency is widespread in many populations, but its role in both Alzheimer's disease and normal aging is understudied. In the present study, we decreased brain vitamin C in the APPSWE/PSEN1deltaE9 mouse model of Alzheimer's disease by crossing APP/PSEN1(+) bigenic mice with SVCT2(+/-) heterozygous knockout mice, which have lower numbers of the sodium-dependent vitamin C transporter required for neuronal vitamin C transport. SVCT2(+/-) mice performed less well on the rotarod task at both 5 and 12 months of age compared to littermates. SVCT2(+/-) and APP/PSEN1(+) mice and the combination genotype SVCT2(+/-)APP/PSEN1(+) were also impaired on multiple tests of cognitive ability (olfactory memory task, Y-maze alternation, conditioned fear, Morris water maze). In younger mice, both low vitamin C (SVCT2(+/-)) and APP/PSEN1 mutations increased brain cortex oxidative stress (malondialdehyde, protein carbonyls, F2-isoprostanes) and decreased total glutathione compared to wild-type controls. SVCT2(+/-) mice also had increased amounts of both soluble and insoluble Aβ1-42 and a higher Aβ1-42/1-40 ratio. By 14 months of age, oxidative stress levels were similar among groups, but there were more amyloid-β plaque deposits in both hippocampus and cortex of SVCT2(+/-)APP/PSEN1(+) mice compared to APP/PSEN1(+) mice with normal brain vitamin C. These data suggest that even moderate intracellular vitamin C deficiency plays an important role in accelerating amyloid pathogenesis, particularly during early stages of disease development, and that these effects are likely modulated by oxidative stress pathways.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.
Warner TA, Kang JQ, Kennard JA, Harrison FE
(2015) Epilepsy Res 110: 20-5
MeSH Terms: Alzheimer Disease, Amyloid beta-Protein Precursor, Animals, Ascorbic Acid, Ascorbic Acid Deficiency, Brain, Disease Models, Animal, Electrodes, Implanted, Electroencephalography, Female, Humans, Kainic Acid, Male, Malondialdehyde, Mice, Knockout, Mice, Transgenic, Oxidative Stress, Pentylenetetrazole, Presenilin-1, Seizures, Sodium-Coupled Vitamin C Transporters
Show Abstract · Added May 11, 2015
Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.
Copyright © 2014 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.
He XB, Kim M, Kim SY, Yi SH, Rhee YH, Kim T, Lee EH, Park CH, Dixit S, Harrison FE, Lee SH
(2015) Stem Cells 33: 1320-32
MeSH Terms: Animals, Ascorbic Acid, Cell Differentiation, Cells, Cultured, Dioxygenases, Dopaminergic Neurons, Epigenesis, Genetic, Jumonji Domain-Containing Histone Demethylases, Mesencephalon, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurogenesis, Rats, Rats, Sprague-Dawley
Show Abstract · Added January 20, 2015
Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development.
© 2014 AlphaMed Press.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Ascorbic acid and the brain: rationale for the use against cognitive decline.
Harrison FE, Bowman GL, Polidori MC
(2014) Nutrients 6: 1752-81
MeSH Terms: Aging, Alzheimer Disease, Animals, Ascorbic Acid, Brain, Cognition, Cognition Disorders, Disease Models, Animal, Humans, Observational Studies as Topic, Randomized Controlled Trials as Topic, Risk Factors
Show Abstract · Added January 20, 2015
This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer's disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice.
Kennard JA, Harrison FE
(2014) Behav Brain Res 264: 34-42
MeSH Terms: Administration, Intravenous, Age Factors, Amyloid beta-Peptides, Amyloid beta-Protein Precursor, Animals, Antioxidants, Ascorbic Acid, Disease Models, Animal, Hippocampus, Humans, Maze Learning, Memory Disorders, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurotransmitter Agents, Peptide Fragments, Presenilin-1, Space Perception, Time Factors
Show Abstract · Added January 20, 2015
The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling.
Copyright © 2014 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms