Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 6 of 6

Publication Record


Using two-site binding models to analyze microscale thermophoresis data.
Tso SC, Chen Q, Vishnivetskiy SA, Gurevich VV, Iverson TM, Brautigam CA
(2018) Anal Biochem 540-541: 64-75
MeSH Terms: Adenosine Monophosphate, Algorithms, Animals, Aptamers, Nucleotide, Binding Sites, Cattle, Kinetics, Models, Molecular, Monte Carlo Method, Mutagenesis, Site-Directed, Phytic Acid, Protein Binding, Recombinant Proteins, beta-Arrestin 2
Show Abstract · Added March 14, 2018
The emergence of microscale thermophoresis (MST) as a technique for determining the dissociation constants for bimolecular interactions has enabled these quantities to be measured in systems that were previously difficult or impracticable. However, most models for analyses of these data featured the assumption of a simple 1:1 binding interaction. The only model widely used for multiple binding sites was the Hill equation. Here, we describe two new MST analytic models that assume a 1:2 binding scheme: the first features two microscopic binding constants (K(1) and K(2)), while the other assumes symmetry in the bivalent molecule, culminating in a model with a single macroscopic dissociation constant (K) and a single factor (α) that accounts for apparent cooperativity in the binding. We also discuss the general applicability of the Hill equation for MST data. The performances of the algorithms on both real and simulated data are assessed, and implementation of the algorithms in the MST analysis program PALMIST is discussed.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast.
Guet D, Burns LT, Maji S, Boulanger J, Hersen P, Wente SR, Salamero J, Dargemont C
(2015) Nat Commun 6: 8882
MeSH Terms: Aptamers, Nucleotide, Cell Nucleus, Gene Expression Regulation, Fungal, Molecular Imaging, RNA, Fungal, RNA, Messenger, Saccharomyces cerevisiae, Transcription, Genetic
Show Abstract · Added February 15, 2016
Although many factors required for the formation of export-competent mRNPs have been described, an integrative view of the spatiotemporal coordinated cascade leading mRNPs from their site of transcription to their site of nuclear exit, at a single cell level, is still partially missing due to technological limitations. Here we report that the RNA Spinach aptamer is a powerful tool for mRNA imaging in live S. cerevisiae with high spatial-temporal resolution and no perturbation of the mRNA biogenesis properties. Dedicated image processing workflows are developed to allow detection of very low abundance of transcripts, accurate quantitative dynamic studies, as well as to provide a localization precision close to 100 nm at consistent time scales. Combining these approaches has provided a state-of-the-art analysis of the osmotic shock response in live yeast by localizing induced transcription factors, target gene loci and corresponding transcripts.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Electrochemical detection of catecholamine release using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes.
Ges IA, Currie KP, Baudenbacher F
(2012) Biosens Bioelectron 34: 30-6
MeSH Terms: Aptamers, Nucleotide, Biosensing Techniques, Catecholamines, Chromaffin Cells, Electrochemical Techniques, Equipment Design, Exocytosis, Humans, Iridium, Luminescence, Microelectrodes, Microfluidics, Thrombin
Show Abstract · Added March 30, 2013
Release of neurotransmitters and hormones by calcium regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20 μm×300 μm) and utilized these for quantitative detection of catecholamine release from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0-400 μM, with a sensitivity of 23.1±0.5 mA/M mm(2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic device and stimulated by rapid perfusion with high potassium (50mM) containing Tyrode's solution at a flow rate of 1 nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the cell culture volume of ~52 μM. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of chromaffin cells.
Copyright © 2011 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Measurement of aptamer-protein interactions with back-scattering interferometry.
Olmsted IR, Xiao Y, Cho M, Csordas AT, Sheehan JH, Meiler J, Soh HT, Bornhop DJ
(2011) Anal Chem 83: 8867-70
MeSH Terms: Aptamers, Nucleotide, Humans, Interferometry, Light, Protein Binding, Solutions, Thrombin
Show Abstract · Added January 24, 2015
We report the quantitative measurement of aptamer-protein interactions using backscattering interferometry (BSI) and show that BSI can determine when distinct binding regions are accessed. As a model system, we utilized two DNA aptamers (Tasset and Bock) that bind to distinct sites of a target protein (human α-thrombin). This is the first time BSI has been used to study a multivalent system in free solution wherein more than one ligand binds to a single target. We measured aptamer equilibrum dissociation constants (K(d)) of 3.84 nM (Tasset-thrombin) and 5.96 nM (Bock-thrombin), in close agreement with the literature. Unexpectedly, we observed allosteric effects such that the binding of the first aptamer resulted in a significant change in the binding affinity of the second aptamer. For example, the K(d) of Bock aptamer binding to preformed Tasset-thrombin complexes was 7-fold lower (indicating higher affinity) compared to binding to thrombin alone. Preliminary modeling efforts suggest evidence for allosteric linkage between the two exosites.
1 Communities
2 Members
0 Resources
7 MeSH Terms
Efficient detection of RNA-protein interactions using tethered RNAs.
Iioka H, Loiselle D, Haystead TA, Macara IG
(2011) Nucleic Acids Res 39: e53
MeSH Terms: Aptamers, Nucleotide, Caco-2 Cells, Chemical Precipitation, HEK293 Cells, Humans, RNA, Transfer, RNA-Binding Proteins
Show Abstract · Added March 5, 2014
The diverse localization of transcripts in cells suggests that there are many specific RNA-protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-specific RNA-binding proteins from cell lysates. The addition of the tRNA scaffold to a Streptavidin aptamer (tRSA) increased binding efficiency by ∼ 10-fold. The tRSA system with an attached G-quartet sequence also could efficiently and specifically capture endogenous Fragile X Mental Retardation Protein (FMRP), which recognizes this RNA sequence. An alternative method, using biotinylated RNA, captured FMRP less efficiently than did our tRSA method. Finally we demonstrate the identification of novel RNA-binding proteins that interact with intron2 or 3'-UTR of the polarity protein Crumbs3 transcript. Proteins captured by these RNA sequences attached to the tRNA scaffold were identified by mass spectrometry. GFP-tagged versions of these proteins also showed specific interaction with either the Crb3 intron2 or 3'-UTR. Our tRSA technique should find wide application in mapping the RNA-protein interactome.
0 Communities
1 Members
0 Resources
7 MeSH Terms
DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer.
Reiter NJ, Maher LJ, Butcher SE
(2008) Nucleic Acids Res 36: 1227-36
MeSH Terms: Aptamers, Nucleotide, Binding Sites, Models, Molecular, Molecular Mimicry, NF-kappa B, NF-kappa B p50 Subunit, Nuclear Magnetic Resonance, Biomolecular
Show Abstract · Added January 28, 2014
The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p50(2) form of NF-kappaB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-kappaB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA.
0 Communities
1 Members
0 Resources
7 MeSH Terms