Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 3 of 3

Publication Record

Connections

Exome Sequencing Identifies Genetic Variants Associated with Circulating Lipid Levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS).
Gao C, Tabb KL, Dimitrov LM, Taylor KD, Wang N, Guo X, Long J, Rotter JI, Watanabe RM, Curran JE, Blangero J, Langefeld CD, Bowden DW, Palmer ND
(2018) Sci Rep 8: 5603
MeSH Terms: Adult, Apolipoprotein A-V, Atherosclerosis, Carrier Proteins, Female, Genetic Linkage, Genetic Variation, Genome-Wide Association Study, Humans, Insulin Resistance, Lipids, Lipoproteins, HDL, Mexican Americans, Middle Aged, Polymorphism, Single Nucleotide, Triglycerides, Whole Exome Sequencing
Show Abstract · Added April 10, 2018
Genome-wide association studies have identified numerous variants associated with lipid levels; yet, the majority are located in non-coding regions with unclear mechanisms. In the Insulin Resistance Atherosclerosis Family Study (IRASFS), heritability estimates suggest a strong genetic basis: low-density lipoprotein (LDL, h = 0.50), high-density lipoprotein (HDL, h = 0.57), total cholesterol (TC, h = 0.53), and triglyceride (TG, h = 0.42) levels. Exome sequencing of 1,205 Mexican Americans (90 pedigrees) from the IRASFS identified 548,889 variants and association and linkage analyses with lipid levels were performed. One genome-wide significant signal was detected in APOA5 with TG (rs651821, P = 3.67 × 10, LOD = 2.36, MAF = 14.2%). In addition, two correlated SNPs (r = 1.0) rs189547099 (P = 6.31 × 10, LOD = 3.13, MAF = 0.50%) and chr4:157997598 (P = 6.31 × 10, LOD = 3.13, MAF = 0.50%) reached exome-wide significance (P < 9.11 × 10). rs189547099 is an intronic SNP in FNIP2 and SNP chr4:157997598 is intronic in GLRB. Linkage analysis revealed 46 SNPs with a LOD > 3 with the strongest signal at rs1141070 (LOD = 4.30, P = 0.33, MAF = 21.6%) in DFFB. A total of 53 nominally associated variants (P < 5.00 × 10, MAF ≥ 1.0%) were selected for replication in six Mexican-American cohorts (N = 3,280). The strongest signal observed was a synonymous variant (rs1160983, P = 4.44 × 10, MAF = 2.7%) in TOMM40. Beyond primary findings, previously reported lipid loci were fine-mapped using exome sequencing in IRASFS. These results support that exome sequencing complements and extends insights into the genetics of lipid levels.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats.
Zhang LS, Sato H, Yang Q, Ryan RO, Wang DQ, Howles PN, Tso P
(2015) Am J Physiol Gastrointest Liver Physiol 309: G918-25
MeSH Terms: Animals, Apolipoprotein A-V, Apolipoproteins, Bile, Biliary Fistula, Chylomicrons, Disease Models, Animal, Duodenum, Emulsions, Fasting, Intestinal Absorption, Liver, Lymph, Male, Phosphatidylcholines, Phospholipids, Rats, Sprague-Dawley, Soybean Oil, Taurocholic Acid, Time Factors, Up-Regulation
Show Abstract · Added December 8, 2015
Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Apolipoprotein A-V deficiency enhances chylomicron production in lymph fistula mice.
Zhang LS, Xu M, Yang Q, Ryan RO, Howles P, Tso P
(2015) Am J Physiol Gastrointest Liver Physiol 308: G634-42
MeSH Terms: Administration, Oral, Animals, Apolipoprotein A-V, Apolipoproteins, Cholesterol, Chylomicrons, Disease Models, Animal, Duodenum, Fistula, Intestinal Absorption, Lymph, Lymphatic Diseases, Lymphatic System, Male, Mice, Inbred C57BL, Mice, Knockout, Postprandial Period, Time Factors, Triolein, Up-Regulation
Show Abstract · Added August 24, 2015
Apolipoprotein A-V (apoA-V), a liver-synthesized apolipoprotein discovered in 2001, strongly modulates fasting plasma triglycerides (TG). Little is reported on the effect of apoA-V on postprandial plasma TG, an independent predictor for atherosclerosis. Overexpressing apoA-V in mice suppresses postprandial TG, but mechanisms focus on increased lipolysis or clearance of remnant particles. Unknown is whether apoA-V suppresses the absorption of dietary lipids by the gut. This study examines how apoA-V deficiency affects the steady-state absorption and lymphatic transport of dietary lipids in chow-fed mice. Using apoA-V knockout (KO, n = 8) and wild-type (WT, n = 8) lymph fistula mice, we analyzed the uptake and lymphatic transport of lipids during a continuous infusion of an emulsion containing [(3)H]triolein and [(14)C]cholesterol. ApoA-V KO mice showed a twofold increase in (3)H (P < 0.001) and a threefold increase in (14)C (P < 0.001) transport into the lymph compared with WT. The increased lymphatic transport was accompanied by a twofold reduction (P < 0.05) in mucosal (3)H, suggesting that apoA-V KO mice more rapidly secreted [(3)H]TG out of the mucosa into the lymph. ApoA-V KO mice also produced chylomicrons more rapidly than WT (P < 0.05), as measured by the transit time of [(14)C]oleic acid from the intestinal lumen to lymph. Interestingly, apoA-V KO mice produced a steadily increasing number of chylomicron particles over time, as measured by lymphatic apoB output. The data suggest that apoA-V suppresses the production of chylomicrons, playing a previously unknown role in lipid metabolism that may contribute to the postprandial hypertriglyceridemia associated with apoA-V deficiency.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
20 MeSH Terms