Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 201

Publication Record

Connections

Thrombotic microangiopathy as a cause of cardiovascular toxicity from the BCR-ABL1 tyrosine kinase inhibitor ponatinib.
Latifi Y, Moccetti F, Wu M, Xie A, Packwood W, Qi Y, Ozawa K, Shentu W, Brown E, Shirai T, McCarty OJ, Ruggeri Z, Moslehi J, Chen J, Druker BJ, López JA, Lindner JR
(2019) Blood 133: 1597-1606
MeSH Terms: Animals, Aorta, Cardiovascular Diseases, Endothelium, Fusion Proteins, bcr-abl, Humans, Imidazoles, Ischemia, Mice, Mice, Knockout, Platelet Adhesiveness, Protein Kinase Inhibitors, Pyridazines, Thrombotic Microangiopathies, Ventricular Dysfunction, von Willebrand Factor
Show Abstract · Added February 24, 2019
The third-generation tyrosine kinase inhibitor (TKI) ponatinib has been associated with high rates of acute ischemic events. The pathophysiology responsible for these events is unknown. We hypothesized that ponatinib produces an endothelial angiopathy involving excessive endothelial-associated von Willebrand factor (VWF) and secondary platelet adhesion. In wild-type mice and ApoE mice on a Western diet, ultrasound molecular imaging of the thoracic aorta for VWF A1-domain and glycoprotein-Ibα was performed to quantify endothelial-associated VWF and platelet adhesion. After treatment of wild-type mice for 7 days, aortic molecular signal for endothelial-associated VWF and platelet adhesion were five- to sixfold higher in ponatinib vs sham therapy ( < .001), whereas dasatinib had no effect. In ApoE mice, aortic VWF and platelet signals were two- to fourfold higher for ponatinib-treated compared with sham-treated mice ( < .05) and were significantly higher than in treated wild-type mice ( < .05). Platelet and VWF signals in ponatinib-treated mice were significantly reduced by -acetylcysteine and completely eliminated by recombinant ADAMTS13. Ponatinib produced segmental left ventricular wall motion abnormalities in 33% of wild-type and 45% of ApoE mice and corresponding patchy perfusion defects, yet coronary arteries were normal on angiography. Instead, a global microvascular angiopathy was detected by immunohistochemistry and by intravital microscopy observation of platelet aggregates and nets associated with endothelial cells and leukocytes. Our findings reveal a new form of vascular toxicity for the TKI ponatinib that involves VWF-mediated platelet adhesion and a secondary microvascular angiopathy that produces ischemic wall motion abnormalities. These processes can be mitigated by interventions known to reduce VWF multimer size.
© 2019 by The American Society of Hematology.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Substrate stiffness heterogeneities disrupt endothelial barrier integrity in a micropillar model of heterogeneous vascular stiffening.
VanderBurgh JA, Hotchkiss H, Potharazu A, Taufalele PV, Reinhart-King CA
(2018) Integr Biol (Camb) 10: 734-746
MeSH Terms: Adherens Junctions, Animals, Aorta, Atherosclerosis, Cattle, Cell Adhesion, Cell Communication, Cell Movement, Dimethylpolysiloxanes, Endothelial Cells, Endothelium, Vascular, Focal Adhesions, Human Umbilical Vein Endothelial Cells, Humans, Leukocytes, Materials Testing, Neutrophils, Phenotype, Tunica Intima, Vascular Stiffness, Vinculin
Show Abstract · Added April 10, 2019
Intimal stiffening has been linked with increased vascular permeability and leukocyte transmigration, hallmarks of atherosclerosis. However, recent evidence indicates age-related intimal stiffening is not uniform but rather characterized by increased point-to-point heterogeneity in subendothelial matrix stiffness, the impact of which is much less understood. To investigate the impact of spatially heterogeneous matrix rigidity on endothelial monolayer integrity, we develop a micropillar model to introduce closely-spaced, step-changes in substrate rigidity and compare endothelial monolayer phenotype to rigidity-matched, uniformly stiff and compliant substrates. We found equivalent disruption of adherens junctions within monolayers on step-rigidity and uniformly stiff substrates relative to uniformly compliant substrates. Similarly, monolayers cultured on step-rigidity substrates exhibited equivalent percentages of leukocyte transmigration to monolayers on rigidity-matched, uniformly stiff substrates. Adherens junction tension and focal adhesion density, but not size, increased within monolayers on step-rigidity and uniformly stiff substrates compared to more compliant substrates suggesting that elevated tension is disrupting adherens junction integrity. Leukocyte transmigration frequency and time, focal adhesion size, and focal adhesion density did not differ between stiff and compliant sub-regions of step-rigidity substrates. Overall, our results suggest that endothelial monolayers exposed to mechanically heterogeneous substrates adopt the phenotype associated with the stiffer matrix, indicating that spatial heterogeneities in intimal stiffness observed with age could disrupt endothelial barrier integrity and contribute to atherogenesis.
0 Communities
1 Members
0 Resources
21 MeSH Terms
LNK deficiency promotes acute aortic dissection and rupture.
Laroumanie F, Korneva A, Bersi MR, Alexander MR, Xiao L, Zhong X, Van Beusecum JP, Chen Y, Saleh MA, McMaster WG, Gavulic KA, Dale BL, Zhao S, Guo Y, Shyr Y, Perrien DS, Cox NJ, Curci JA, Humphrey JD, Madhur MS
(2018) JCI Insight 3:
MeSH Terms: Adaptor Proteins, Signal Transducing, Aneurysm, Dissecting, Angiotensin II, Animals, Aorta, Aortic Rupture, Disease Models, Animal, Female, Genetic Predisposition to Disease, Homeodomain Proteins, Humans, Male, Mice, Mice, Knockout
Show Abstract · Added April 1, 2019
Aortic dissection (AD) is a life-threatening vascular disease with limited treatment strategies. Here, we show that loss of the GWAS-identified SH2B3 gene, encoding lymphocyte adaptor protein LNK, markedly increases susceptibility to acute AD and rupture in response to angiotensin (Ang) II infusion. As early as day 3 following Ang II infusion, prior to the development of AD, Lnk-/- aortas display altered mechanical properties, increased elastin breaks, collagen thinning, enhanced neutrophil accumulation, and increased MMP-9 activity compared with WT mice. Adoptive transfer of Lnk-/- leukocytes into Rag1-/- mice induces AD and rupture in response to Ang II, demonstrating that LNK deficiency in hematopoietic cells plays a key role in this disease. Interestingly, treatment with doxycycline prevents the early accumulation of aortic neutrophils and significantly reduces the incidence of AD and rupture. PrediXcan analysis in a biobank of more than 23,000 individuals reveals that decreased expression of SH2B3 is significantly associated with increased frequency of AD-related phenotypes (odds ratio 0.81). Thus, we identified a role for LNK in the pathology of AD in experimental animals and humans and describe a new model that can be used to inform both inherited and acquired forms of this disease.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Higher Aortic Stiffness Is Related to Lower Cerebral Blood Flow and Preserved Cerebrovascular Reactivity in Older Adults.
Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, Nair S, Pechman KR, Rane S, Davis LT, Gifford KA, Hohman TJ, Bell SP, Wang TJ, Beckman JA, Carr JJ
(2018) Circulation 138: 1951-1962
MeSH Terms: Aged, Aorta, Thoracic, Apolipoprotein E4, Brain, Cerebrovascular Circulation, Cognition, Cognitive Dysfunction, Female, Hemodynamics, Humans, Linear Models, Magnetic Resonance Imaging, Cine, Male, Middle Aged, Pulse Wave Analysis, Vascular Stiffness
Show Abstract · Added September 11, 2018
BACKGROUND - Mechanisms underlying the association between age-related arterial stiffening and poor brain health remain elusive. Cerebral blood flow (CBF) homeostasis may be implicated. This study evaluates how aortic stiffening relates to resting CBF and cerebrovascular reactivity (CVR) in older adults.
METHODS - Vanderbilt Memory & Aging Project participants free of clinical dementia, stroke, and heart failure were studied, including older adults with normal cognition (n=155; age, 72±7 years; 59% male) or mild cognitive impairment (n=115; age, 73±7 years; 57% male). Aortic pulse wave velocity (PWV; meters per second) was quantified from cardiac magnetic resonance. Resting CBF (milliliters per 100 g per minute) and CVR (CBF response to hypercapnic normoxia stimulus) were quantified from pseudocontinuous arterial spin labeling magnetic resonance imaging. Linear regression models related aortic PWV to regional CBF, adjusting for age, race/ethnicity, education, Framingham Stroke Risk Profile (diabetes mellitus, smoking, left ventricular hypertrophy, prevalent cardiovascular disease, atrial fibrillation), hypertension, body mass index, apolipoprotein E4 ( APOE ε4) status, and regional tissue volume. Models were repeated testing PWV× APOE ε4 interactions. Sensitivity analyses excluded participants with prevalent cardiovascular disease and atrial fibrillation.
RESULTS - Among participants with normal cognition, higher aortic PWV related to lower frontal lobe CBF (β=-0.43; P=0.04) and higher CVR in the whole brain (β=0.11; P=0.02), frontal lobes (β=0.12; P<0.05), temporal lobes (β=0.11; P=0.02), and occipital lobes (β=0.14; P=0.01). Among APOE ε4 carriers with normal cognition, findings were more pronounced with higher PWV relating to lower whole-brain CBF (β=-1.16; P=0.047), lower temporal lobe CBF (β=-1.81; P=0.004), and higher temporal lobe CVR (β=0.26; P=0.08), although the last result did not meet the a priori significance threshold. Results were similar in sensitivity models. Among participants with mild cognitive impairment, higher aortic PWV related to lower CBF in the occipital lobe (β=-0.70; P=0.02), but this finding was attenuated when participants with prevalent cardiovascular disease and atrial fibrillation were excluded. Among APOE ε4 carriers with mild cognitive impairment, findings were more pronounced with higher PWV relating to lower temporal lobe CBF (β=-1.20; P=0.02).
CONCLUSIONS - Greater aortic stiffening relates to lower regional CBF and higher CVR in cognitively normal older adults, especially among individuals with increased genetic predisposition for Alzheimer's disease. Central arterial stiffening may contribute to reductions in regional CBF despite preserved cerebrovascular reserve capacity.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages.
Mueller PA, Zhu L, Tavori H, Huynh K, Giunzioni I, Stafford JM, Linton MF, Fazio S
(2018) Circulation 138: 1850-1863
MeSH Terms: Animals, Aorta, Aortic Diseases, Apoptosis, Atherosclerosis, Cells, Cultured, Cholesterol, Disease Models, Animal, Female, Gene Deletion, Genetic Predisposition to Disease, Macrophages, Mice, Knockout, ApoE, Necrosis, Phenotype, Plaque, Atherosclerotic, Receptors, CCR7, Receptors, LDL, Signal Transduction, Tumor Suppressor Proteins, Up-Regulation
Show Abstract · Added July 20, 2018
BACKGROUND - We previously showed that mice lacking MΦLRP1 (low-density lipoprotein receptor-related protein 1 in macrophages) undergo accelerated atherosclerotic plaque formation due to changes in macrophages including increased apoptosis, decreased efferocytosis, and exaggerated transition to the inflammatory M1 phenotype. Here we sought to explore the role of macrophage low-density lipoprotein receptor-related protein 1 during regression of atherosclerosis since regressing plaques are characterized by transitioning of macrophages to M2 status as inflammation resolves.
METHODS - Apolipoprotein E mice on a high-fat diet for 12 weeks were reconstituted with bone marrow from apolipoprotein E-producing wild-type or MΦLRP1 mice, and then placed on a chow diet for 10 weeks (n=9 to 11 mice/group). A cohort of apolipoprotein E mice reconstituted with apolipoprotein E bone marrow served as baseline controls (n=9).
RESULTS - Plaques of both wild-type and MΦLRP1 bone marrow recipients regressed compared with controls (11% and 22%, respectively; P<0.05), and plaques of MΦLRP1 recipients were 13% smaller than those of wild-type recipients ( P<0.05). Recipients of MΦLRP1 marrow had 36% fewer M1 macrophages ( P<0.01) and 2.5-fold more CCR7 (C-C chemokine receptor type 7)-positive macrophages in the plaque relative to wild-type mice ( P<0.01). Additionally, in vivo studies of cellular egress showed a 4.6-fold increase in 5-ethynyl-2´-deoxyuridine-labeled CCR7 macrophages in mediastinal lymph nodes. Finally, in vivo studies of reverse cholesterol transport showed a 1.4-fold higher reverse cholesterol transport in MΦLRP1 recipient mice ( P<0.01).
CONCLUSIONS - Absence of macrophage low-density lipoprotein receptor-related protein 1 unexpectedly accelerates atherosclerosis regression, enhances reverse cholesterol transport, and increases expression of the motility receptor CCR7, which drives macrophage egress from lesions.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Beneficial Effects of Exercise on Subendothelial Matrix Stiffness are Short-Lived.
Kohn JC, Bordeleau F, Miller J, Watkins HC, Modi S, Ma J, Azar J, Putnam D, Reinhart-King CA
(2018) J Biomech Eng 140:
MeSH Terms: Animals, Aorta, Biomechanical Phenomena, Collagen, Endothelium, Vascular, Glycation End Products, Advanced, Male, Mechanical Phenomena, Mice, Mice, Inbred C57BL, Physical Conditioning, Animal, Pulse Wave Analysis, Rest, Stroke Volume
Show Abstract · Added April 10, 2019
Aerobic exercise helps to maintain cardiovascular health in part by mitigating age-induced arterial stiffening. However, the long-term effects of exercise regimens on aortic stiffness remain unknown, especially in the intimal extracellular matrix layer known as the subendothelial matrix. To examine how the stiffness of the subendothelial matrix changes following exercise cessation, mice were exposed to an 8 week swimming regimen followed by an 8 week sedentary rest period. Whole vessel and subendothelial matrix stiffness were measured after both the exercise and rest periods. After swimming, whole vessel and subendothelial matrix stiffness decreased, and after 8 weeks of rest, these values returned to baseline. Within the same time frame, the collagen content in the intima layer and the presence of advanced glycation end products (AGEs) in the whole vessel were also affected by the exercise and the rest periods. Overall, our data indicate that consistent exercise is necessary for maintaining compliance in the subendothelial matrix.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Loss of in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice.
Babaev VR, Huang J, Ding L, Zhang Y, May JM, Linton MF
(2018) Front Immunol 9: 215
MeSH Terms: Animals, Aorta, Atherosclerosis, Cell Proliferation, Cell Survival, Diet, Western, Disease Models, Animal, Female, Humans, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Monocytes, Rapamycin-Insensitive Companion of mTOR Protein, Receptors, LDL
Show Abstract · Added April 10, 2018
Background - Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of inactivates mTORC2, which directly activates Akt S phosphorylation and promotes pro-survival cell signaling and proliferation.
Methods and results - To study the role of mTORC2 signaling in monocytes and macrophages, we generated mice with myeloid lineage-specific deletion (M). These M mice exhibited dramatic reductions of white blood cells, B-cells, T-cells, and monocytes but had similar levels of neutrophils compared to control flox-flox () mice. M bone marrow monocytes and peritoneal macrophages expressed reduced levels of mTORC2 signaling and decreased Akt S phosphorylation, and they displayed significantly less proliferation than control cells. In addition, blood monocytes and peritoneal macrophages isolated from M mice were significantly more sensitive to pro-apoptotic stimuli. In response to LPS, M macrophages exhibited the M1 phenotype with higher levels of pro-inflammatory gene expression and lower levels of gene expression than control cells. Further suppression of LPS-stimulated Akt signaling with a low dose of an Akt inhibitor, increased inflammatory gene expression in macrophages, but genetic inactivation of reversed this rise, indicating that mTORC1 mediates this increase of inflammatory gene expression. Next, to elucidate whether mTORC2 has an impact on atherosclerosis , female and male null mice were reconstituted with bone marrow from M or mice. After 10 weeks of the Western diet, there were no differences between the recipients of the same gender in body weight, blood glucose or plasma lipid levels. However, both female and male M →  mice developed smaller atherosclerotic lesions in the distal and proximal aorta. These lesions contained less macrophage area and more apoptosis than lesions of control →  mice. Thus, loss of and, consequently, mTORC2 significantly compromised monocyte/macrophage survival, and this markedly diminished early atherosclerosis in mice.
Conclusion - Our results demonstrate that mTORC2 is a key signaling regulator of macrophage survival and its depletion suppresses early atherosclerosis.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Eigenstrain as a mechanical set-point of cells.
Lin S, Lampi MC, Reinhart-King CA, Tsui G, Wang J, Nelson CA, Gu L
(2018) Biomech Model Mechanobiol 17: 951-959
MeSH Terms: Animals, Aorta, Biomechanical Phenomena, Cattle, Cells, Cultured, Endothelial Cells, Models, Biological, Stress, Mechanical
Show Abstract · Added April 10, 2019
Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell-substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell mechanosensing. We showed that cell spread area, traction force on a substrate, as well as the average stress of a cell were increased in response to a stiffer substrate. However, the cell average strain, which is cell type-specific, was kept at the same level regardless of the substrate stiffness. This indicated that the cell average strain is the tensional homeostasis that each type of cell tries to maintain. Furthermore, cell contraction in terms of eigenstrain was found to be the same for both BAECs and fibroblast cells in different mechanical environments. This implied a potential mechanical set-point across different cell types. Our results suggest that additional measurements of contractility might be useful for monitoring cell mechanosensing as well as dynamic remodeling of the extracellular matrix (ECM). This work could help to advance the understanding of the cell-ECM relationship, leading to better regenerative strategies.
0 Communities
1 Members
0 Resources
MeSH Terms
High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.
Kohn JC, Azar J, Seta F, Reinhart-King CA
(2018) Cardiovasc Eng Technol 9: 84-93
MeSH Terms: Animals, Aorta, Abdominal, Arterial Pressure, Diet, Healthy, Diet, High-Fat, Dietary Sugars, Disease Models, Animal, Elastic Modulus, Exercise Therapy, Extracellular Matrix, Male, Mice, Inbred C57BL, Microscopy, Atomic Force, Peripheral Arterial Disease, Pulse Wave Analysis, Risk Reduction Behavior, Time Factors, Vascular Stiffness
Show Abstract · Added December 7, 2017
Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.
1 Communities
1 Members
0 Resources
18 MeSH Terms
P2X7R antagonism after subfailure overstretch injury of blood vessels reverses vasomotor dysfunction and prevents apoptosis.
Luo W, Feldman D, McCallister R, Brophy C, Cheung-Flynn J
(2017) Purinergic Signal 13: 579-590
MeSH Terms: Animals, Aorta, Apoptosis, Coronary Artery Bypass, Female, Humans, Male, Purinergic P2X Receptor Antagonists, Rats, Rats, Sprague-Dawley, Receptors, Purinergic P2X7, Saphenous Vein, Specimen Handling
Show Abstract · Added May 22, 2018
Human saphenous vein (HSV) is harvested and prepared prior to implantation as an arterial bypass graft. Injury and the response to injury from surgical harvest and preparation trigger cascades of molecular events and contribute to graft remodeling and intimal hyperplasia. Apoptosis is an early response after implantation that contributes the development of neointimal lesions. Here, we showed that surgical harvest and preparation of HSV leads to vasomotor dysfunction, increased apoptosis and downregulation of the phosphorylation of the anti-apoptotic protein, Niban. A model of subfailure overstretch injury in rat aorta (RA) was used to demonstrate impaired vasomotor function, increased extracellular ATP (eATP) release, and increased apoptosis following pathological vascular injury. The subfailure overstretch injury was associated with activation of p38 MAPK stress pathway and decreases in the phosphorylation of the anti-apoptotic protein Niban. Treatment of RA after overstretch injury with antagonists to purinergic P2X7 receptor (P2X7R) antagonists or P2X7R/pannexin (PanX1) complex, but not PanX1 alone, restored vasomotor function. Inhibitors to P2X7R and PanX1 reduced stretch-induced eATP release. P2X7R/PanX1 antagonism led to decrease in p38 MAPK phosphorylation, restoration of Niban phosphorylation and increases in the phosphorylation of the anti-apoptotic protein Akt in RA and reduced TNFα-stimulated caspase 3/7 activity in cultured rat vascular smooth muscle cells. In conclusion, inhibition of P2X7R after overstretch injury restored vasomotor function and inhibited apoptosis. Treatment with P2X7R/PanX1 complex inhibitors after harvest and preparation injury of blood vessels used for bypass conduits may prevent the subsequent response to injury that lead to apoptosis and represents a novel therapeutic approach to prevent graft failure.
0 Communities
1 Members
0 Resources
13 MeSH Terms