Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 86

Publication Record


T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling.
Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, Inderberg EM, Lingjærde OC, Østenstad B, Smeland EB, Levy R, Irish JM, Myklebust JH
(2018) Clin Cancer Res 24: 870-881
MeSH Terms: Antigens, Differentiation, T-Lymphocyte, CD8-Positive T-Lymphocytes, Cytokines, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Lymphoma, Follicular, Receptors, Antigen, T-Cell, Receptors, Immunologic, Signal Transduction, T-Lymphocyte Subsets, Tumor Microenvironment
Show Abstract · Added December 15, 2017
T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets. Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry. TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFNγ, while TCR proximal signaling (p-CD3ζ, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon culture. The costimulatory receptor CD226 was downregulated in TIGIT compared with TIGIT CD8 FL T cells, further skewing the balance toward immunosuppression. TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. .
©2017 American Association for Cancer Research.
1 Communities
1 Members
0 Resources
12 MeSH Terms
CD318 is a ligand for CD6.
Enyindah-Asonye G, Li Y, Ruth JH, Spassov DS, Hebron KE, Zijlstra A, Moasser MM, Wang B, Singer NG, Cui H, Ohara RA, Rasmussen SM, Fox DA, Lin F
(2017) Proc Natl Acad Sci U S A 114: E6912-E6921
MeSH Terms: A549 Cells, Animals, Antigens, CD, Antigens, Differentiation, T-Lymphocyte, Antigens, Neoplasm, Arthritis, Rheumatoid, Cell Adhesion Molecules, Cell Line, Cell Line, Tumor, Encephalomyelitis, Autoimmune, Experimental, Humans, Ligands, Membrane Glycoproteins, Mice, Inbred C57BL, Mice, Knockout, Neoplasm Proteins, Synovial Membrane, T-Lymphocytes
Show Abstract · Added March 22, 2018
It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.
0 Communities
1 Members
0 Resources
18 MeSH Terms
IL-15 Superagonist-Mediated Immunotoxicity: Role of NK Cells and IFN-γ.
Guo Y, Luan L, Rabacal W, Bohannon JK, Fensterheim BA, Hernandez A, Sherwood ER
(2015) J Immunol 195: 2353-64
MeSH Terms: Animals, Antigens, CD, Antigens, Differentiation, T-Lymphocyte, Body Temperature, CD8-Positive T-Lymphocytes, Cell Proliferation, Cytotoxicity, Immunologic, Dose-Response Relationship, Drug, Female, Flow Cytometry, Granzymes, Humans, Interferon-gamma, Interleukin-15, Interleukin-15 Receptor alpha Subunit, Killer Cells, Natural, Lectins, C-Type, Lymphocyte Activation, Mice, Inbred C57BL, Mice, Knockout, Multiprotein Complexes, Perforin
Show Abstract · Added October 18, 2015
IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8(+) T (mCD8(+) T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8(+) T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8(+) T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA-induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA-mediated immunotoxicity.
Copyright © 2015 by The American Association of Immunologists, Inc.
0 Communities
2 Members
0 Resources
22 MeSH Terms
Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques.
Habib A, Polavarapu R, Karmali V, Guo L, Van Dam R, Cheng Q, Akahori H, Saeed O, Nakano M, Pachura K, Hong CC, Shin E, Kolodgie F, Virmani R, Finn AV
(2015) Atherosclerosis 241: 692-700
MeSH Terms: Animals, Antigens, CD, Antigens, Differentiation, Myelomonocytic, Cation Transport Proteins, Foam Cells, Haptoglobins, Hemoglobins, Hepcidins, Humans, Inflammation, Iron, Lipopolysaccharides, Lipoproteins, LDL, Macrophages, Macrophages, Peritoneal, Male, Membrane Microdomains, Mice, Mice, Inbred C57BL, Mice, Knockout, Myeloid Differentiation Factor 88, Plaque, Atherosclerotic, Receptors, Cell Surface, Signal Transduction, Toll-Like Receptor 4, Tumor Necrosis Factor-alpha
Show Abstract · Added July 7, 2015
OBJECTIVES - Toll-like Receptor 4 (TLR4) is implicated in modulating inflammatory cytokines though its role in atherosclerosis remains uncertain. We have recently described a non-foam cell macrophage phenotype driven by ingestion of hemoglobin:haptoglobin complexes (HH), via the scavenger receptor CD163, characterized by reduced inflammatory cytokine production. In this study, we examined the role of iron metabolism in modulating TLR4 signaling in these cells.
METHODS AND RESULTS - Areas in human atherosclerotic plaque with non-foam cell, CD163 positive macrophages demonstrated reduced expression of tumor necrosis factor alpha (TNF-α) and interferon-beta (INF-β) compared to foam cells. Human macrophages differentiated in hemoglobin:haptoglobin (HH) complexes expressed the CD163 positive non-foam cell phenotype and demonstrated significantly less TNF-α and INF-β compared to control macrophages when exposed to oxidized LDL (oxLDL) or lipopolysaccharide (LPS). LPS stimulated expression of TNF-α and INF-β could be restored in HH macrophages by pretreatment with hepcidin, an endogenous suppressor of ferroportin1 (FPN), or by genetic suppression of FPN in macrophages derived from myeloid specific FPN knockout mice. LPS stimulated control macrophages demonstrated increase in TLR4 trafficking to lipid rafts; this response was suppressed in HH macrophages but was restored upon pretreatment with hepcidin. Using a pharmacologic hepcidin suppressor, we observed a decrease in cytokine expression and TLR4-lipid raft trafficking in LPS-stimulated in a murine macrophage model.
CONCLUSION - TLR4 dependent macrophage signaling is controlled via hepcidin-ferroportin1 axis by influencing TLR4-lipid raft interactions. Pharmacologic manipulation of iron metabolism may represent a promising approach to limiting TLR4-mediated inflammatory responses.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
26 MeSH Terms
Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis.
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL
(2015) Dev Dyn 244: 122-33
MeSH Terms: Animals, Antigens, Differentiation, Calcification, Physiologic, Gene Expression Regulation, Developmental, Mesoderm, Mice, Mice, Knockout, Neovascularization, Physiologic, Organogenesis, Osteoblasts, Palate, Hard, Proteoglycans, Receptors, Transforming Growth Factor beta
Show Abstract · Added February 19, 2015
BACKGROUND - Cleft palate occurs in up to 1:1,000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown.
RESULTS - The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3(-) (/) (-) embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3(-) (/) (-) embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3(-) (/) (-) palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3.
CONCLUSIONS - These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis.
© 2014 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
13 MeSH Terms
In vitro induction of regulatory CD4+CD8α+ T cells by TGF-β, IL-7 and IFN-γ.
Van Kaer L, Rabacal WA, Scott Algood HM, Parekh VV, Olivares-Villagómez D
(2013) PLoS One 8: e67821
MeSH Terms: Adoptive Transfer, Animals, Antigens, CD, Antigens, Differentiation, CD4 Antigens, CD8 Antigens, CTLA-4 Antigen, Cell Differentiation, Cell Lineage, Core Binding Factor Alpha 3 Subunit, Cytokines, Immunophenotyping, Interferon-gamma, Interleukin-7, Intestinal Mucosa, Mice, Mice, Knockout, NK Cell Lectin-Like Receptor Subfamily K, Programmed Cell Death 1 Receptor, T-Lymphocytes, Regulatory, Transforming Growth Factor beta, Vitamin D
Show Abstract · Added March 7, 2014
In vitro CD4(+) T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4(+) T cells into effector cells with distinct biological functions. Mature CD4(+) T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4(+)CD8α(+) T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4(+)CD8α(+) T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4(+) T cells are stimulated to become CD4(+)CD8α(+) T cells in the presence of TGF-β, IL-7 and IFN-γ, resulting in cells with very similar features as CD4(+)CD8α(+) intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4(+)CD8α(+) T cells.
0 Communities
3 Members
0 Resources
22 MeSH Terms
SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation.
Robson MJ, Turner RC, Naser ZJ, McCurdy CR, Huber JD, Matsumoto RR
(2013) Exp Neurol 247: 134-42
MeSH Terms: Analysis of Variance, Animals, Antigens, CD, Antigens, Differentiation, Myelomonocytic, Benzoxazoles, Body Temperature, Brain, Cytokines, Male, Methamphetamine, Mice, Microglia, Piperazines, RNA, Messenger, Receptors, sigma, Time Factors, Up-Regulation
Show Abstract · Added July 10, 2013
Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
The skeletal site-specific role of connective tissue growth factor in prenatal osteogenesis.
Lambi AG, Pankratz TL, Mundy C, Gannon M, Barbe MF, Richtsmeier JT, Popoff SN
(2012) Dev Dyn 241: 1944-59
MeSH Terms: Animals, Antigens, Differentiation, Cell Proliferation, Connective Tissue Growth Factor, Growth Plate, Mice, Mice, Knockout, Organ Specificity, Osteogenesis, Skull, Spine
Show Abstract · Added January 6, 2014
BACKGROUND - Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted.
RESULTS - We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype.
CONCLUSIONS - We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation.
Copyright © 2012 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
11 MeSH Terms
Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation.
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ
(2012) PLoS One 7: e36669
MeSH Terms: Animals, Antigens, Differentiation, Biomarkers, Tumor, Cadherins, Carcinoma, Squamous Cell, Cell Proliferation, Female, Gene Expression Regulation, Neoplastic, Hepatocyte Nuclear Factor 3-alpha, Humans, Male, Mice, Mice, SCID, Middle Aged, Neoplasm Grading, Neoplasm Invasiveness, Neoplasm Staging, Neoplasm Transplantation, Rats, Urinary Bladder Neoplasms, Urothelium
Show Abstract · Added March 15, 2013
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
1 Communities
3 Members
0 Resources
21 MeSH Terms
Prostaglandin E2 restrains macrophage maturation via E prostanoid receptor 2/protein kinase A signaling.
Zaslona Z, Serezani CH, Okunishi K, Aronoff DM, Peters-Golden M
(2012) Blood 119: 2358-67
MeSH Terms: Animals, Antigens, Differentiation, CD11b Antigen, Cell Line, Tumor, Cells, Cultured, Cyclic AMP-Dependent Protein Kinases, Dinoprostone, Female, Flow Cytometry, Gene Expression, Macrophage Colony-Stimulating Factor, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Misoprostol, Peritonitis, Prostaglandin Antagonists, Receptor, Macrophage Colony-Stimulating Factor, Receptors, Prostaglandin E, EP2 Subtype, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, Thioglycolates, Xanthones
Show Abstract · Added May 4, 2017
Prostaglandin E(2) (PGE(2)) is a lipid mediator that acts by ligating 4 distinct G protein-coupled receptors, E prostanoid (EP) 1 to 4. Previous studies identified the importance of PGE(2) in regulating macrophage functions, but little is known about its effect on macrophage maturation. Macrophage maturation was studied in vitro in bone marrow cell cultures, and in vivo in a model of peritonitis. EP2 was the most abundant PGE(2) receptor expressed by bone marrow cells, and its expression further increased during macrophage maturation. EP2-deficient (EP2(-/-)) macrophages exhibited enhanced in vitro maturation compared with wild-type cells, as evidenced by higher F4/80 expression. An EP2 antagonist also increased maturation. In the peritonitis model, EP2(-/-) mice exhibited a higher percentage of F4/80(high)/CD11b(high) cells and greater expression of macrophage colony-stimulating factor receptor (M-CSFR) in both the blood and the peritoneal cavity. Subcutaneous injection of the PGE(2) analog misoprostol decreased M-CSFR expression in bone marrow cells and reduced the number of peritoneal macrophages in wild-type mice but not EP2(-/-) mice. The suppressive effect of EP2 ligation on in vitro macrophage maturation was mimicked by a selective protein kinase A agonist. Our findings reveal a novel role for PGE(2)/EP2/protein kinase A signaling in the suppression of macrophage maturation.
0 Communities
1 Members
0 Resources
25 MeSH Terms