Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 3 of 3

Publication Record


Prostaglandin E2 deficiency uncovers a dominant role for thromboxane A2 in house dust mite-induced allergic pulmonary inflammation.
Liu T, Laidlaw TM, Feng C, Xing W, Shen S, Milne GL, Boyce JA
(2012) Proc Natl Acad Sci U S A 109: 12692-7
MeSH Terms: Allergens, Animals, Antigens, Dermatophagoides, Asthma, Dinoprostone, Intercellular Adhesion Molecule-1, Intramolecular Oxidoreductases, Male, Mice, Mice, Knockout, Pneumonia, Prostaglandin-E Synthases, Pulmonary Eosinophilia, Receptors, Prostaglandin E, EP1 Subtype, Receptors, Prostaglandin E, EP2 Subtype, Receptors, Thromboxane, Signal Transduction, Thromboxane A2, Up-Regulation
Show Abstract · Added March 26, 2014
Prostaglandin E(2) (PGE(2)) is an abundant lipid inflammatory mediator with potent but incompletely understood anti-inflammatory actions in the lung. Deficient PGE(2) generation in the lung predisposes to airway hyperresponsiveness and aspirin intolerance in asthmatic individuals. PGE(2)-deficient ptges(-/-) mice develop exaggerated pulmonary eosinophilia and pulmonary arteriolar smooth-muscle hyperplasia compared with PGE(2)-sufficient controls when challenged intranasally with a house dust mite extract. We now demonstrate that both pulmonary eosinophilia and vascular remodeling in the setting of PGE(2) deficiency depend on thromboxane A(2) and signaling through the T prostanoid (TP) receptor. Deletion of TP receptors from ptges(-/-) mice reduces inflammation, vascular remodeling, cytokine generation, and airway reactivity to wild-type levels, with contributions from TP receptors localized to both hematopoietic cells and tissue. TP receptor signaling ex vivo is controlled heterologously by E prostanoid (EP)(1) and EP(2) receptor-dependent signaling pathways coupling to protein kinases C and A, respectively. TP-dependent up-regulation of intracellular adhesion molecule-1 expression is essential for the effects of PGE(2) deficiency. Thus, PGE(2) controls the strength of TP receptor signaling as a major bronchoprotective mechanism, carrying implications for the pathobiology and therapy of asthma.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Effect of chronic mild stress on serotonergic markers in the skin and brain of the NC/Nga atopic-like mouse strain.
Rasul A, El-Nour H, Blakely RD, Lonne-Rahm SB, Forsberg J, Johansson B, Theodorsson E, Nordlind K
(2011) Arch Dermatol Res 303: 625-33
MeSH Terms: Animals, Antigens, Dermatophagoides, Brain, Chronic Disease, Dermatitis, Atopic, Disease Susceptibility, Gene Expression Regulation, Mast Cells, Mice, Mice, Inbred Strains, Microscopy, Fluorescence, Receptor, Serotonin, 5-HT1A, Receptor, Serotonin, 5-HT2A, Serotonin, Serotonin Plasma Membrane Transport Proteins, Skin, Stress, Physiological
Show Abstract · Added July 10, 2013
Atopic eczema is often worsened by stress. While acute stress is associated with increased turnover of serotonin (5-hydroxytryptamine; 5-HT), chronic stress causes a decrease. In chronic stress, there is a decrease of the 5-HT1A receptor (R)- and an increase in the 5-HT2AR-responsiveness to 5-HT. In the present study, the impact of chronic mild stress on the expression of 5-HT1A and 5-HT2A receptors and serotonin transporter protein (SERT) was investigated in eczematous skin and brain of atopic-like NC/Nga mice. Twenty-four NC/Nga mice were subjected to chronic mild stress for 12 weeks, and eczema was induced by applying a mite antigen (Dermatophagoides pteronyssinus) on the ears for the last 4 weeks. The mice were divided into three groups, eight per group, stressed eczematous (SE), non-stressed eczematous (NSE) and stressed control (SC). The biopsies were analysed by immunohistochemistry, using a streptavidin-biotin technique. There was an increased number of 5-HT containing dermal mast cell-like mononuclear cells in the skin of mice with eczema (SE and NSE, respectively) compared with the SC, and a tendency to more 5-HT-positive cells in the SE compared with the NSE group. Increased 5-HT1AR immunoreactivity (IR) in the skin and hippocampus of the eczematous groups compared to the control group was seen, but no difference between the SE and NSE groups. The epidermal immunoreactivity for 5-HT2AR was highest in the SE and NSE compared to the SC group, and was also higher in the SE compared to NSE. 5-HT2AR expression was also seen on nerve bundles, the number and intensity of such bundles being decreased in the SE compared to the NSE group. In the CA1 area of the hippocampus, there was an increase in the quantity of cells immunoreactive for 5-HT2AR in the SE versus the NSE group and also in the SE versus the SC group. SERT-IR was found also on nerve bundles with a decreased number in the SE compared to the NSE and SC group. There is a modulation of the expression of serotonergic markers in the eczematous skin and brain of the atopic-like mouse during chronic mild stress.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Genome scan for loci linked to mite sensitivity: the Collaborative Study on the Genetics of Asthma (CSGA).
Blumenthal MN, Ober C, Beaty TH, Bleecker ER, Langefeld CD, King RA, Lester L, Cox N, Barnes K, Togias A, Mathias R, Meyers DA, Oetting W, Rich SS, CSGA
(2004) Genes Immun 5: 226-31
MeSH Terms: Animals, Antigens, Dermatophagoides, Asthma, Chromosome Mapping, Chromosomes, Human, Pair 19, Chromosomes, Human, Pair 20, Disease Susceptibility, Ethnic Groups, Female, Genetic Linkage, Genome, Human, Genotype, Humans, Hypersensitivity, Immediate, Lod Score, Male, Mites, Phenotype, Polymorphism, Genetic, Skin Tests
Show Abstract · Added February 22, 2016
Mite sensitivity has been reported to be a major risk factor for asthma. As part of the Collaborative Study on the Genetics of Asthma (CSGA), a genome scan using mite reactivity (Dermatophagoides Pteronyssinus (Der p) and Dermatophagoides farinae (Der f)) as the phenotype was conducted. In 287 CSGA families, 122 were informative for linkage. Evidence supporting linkage was observed for regions on chromosome 19 (D19S591, lod=2.43, P=0.0008; D19S1037, lod=1.57, P=0.007) and chromosome 20 (D20S473/D20S604, lod=1.41, P=0.01). All three ethnic groups appeared to contribute to the evidence for linkage on chromosome 20. African-American families gave strongest support for linkage on chromosomes 3 (D3S2409, lod=1.33, P=0.01), 12 (D12S373, lod=1.51, P=0.008) and 18 (ATA82B02, lod=1.32, P=0.01). Caucasian families showed strong evidence for linkage on chromosome 19 (D19S591, lod=3.51, P=0.00006). Hispanic families supported linkage on chromosomes 11 (D11S1984, lod=1.56, P=0.007), 13 (D13S787, lod=1.30, P=0.01) and 20 (D20S470, lod=1.71, P=0.005). These results suggest that multiple genes may be involved in controlling skin reactivity to Dermatophoigoies.
0 Communities
1 Members
0 Resources
20 MeSH Terms