Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 267

Publication Record

Connections

The Proximal Airway Is a Reservoir for Adaptive Immunologic Memory in Idiopathic Subglottic Stenosis.
Gelbard A, Wanjalla C, Wootten CT, Drake WP, Lowery AS, Wheeler DA, Cardenas MF, Sikora AG, Pathak RR, McDonnell W, Mallal S, Pilkinton M
(2021) Laryngoscope 131: 610-617
MeSH Terms: Adult, Aged, Airway Obstruction, Antigens, CD, Antigens, Differentiation, T-Lymphocyte, CD8 Antigens, Cicatrix, Constriction, Pathologic, Female, Glottis, Humans, Immunohistochemistry, Immunologic Memory, Integrin alpha Chains, Laryngostenosis, Lectins, C-Type, Male, Middle Aged, T-Lymphocyte Subsets
Show Abstract · Added July 30, 2020
OBJECTIVES/HYPOTHESIS - Characterization of the localized adaptive immune response in the airway scar of patients with idiopathic subglottic stenosis (iSGS).
STUDY DESIGN - Basic Science.
METHODS - Utilizing 36 patients with subglottic stenosis (25 idiopathic subglottic stenosis [iSGS], 10 iatrogenic post-intubation stenosis [iLTS], and one granulomatosis with polyangiitis [GPA]) we applied immunohistochemical and immunologic techniques coupled with RNA sequencing.
RESULTS - iSGS, iLTS, and GPA demonstrate a significant immune infiltrate in the subglottic scar consisting of adaptive cell subsets (T cells along with dendritic cells). Interrogation of T cell subtypes showed significantly more CD69 CD103 CD8 tissue resident memory T cells (T ) in the iSGS airway scar than iLTS specimens (iSGS vs. iLTS; 50% vs. 28%, P = .0065). Additionally, subglottic CD8 clones possessed T-cell receptor (TCR) sequences with known antigen specificity for viral and intracellular pathogens.
CONCLUSIONS - The human subglottis is significantly enriched for CD8 tissue resident memory T cells in iSGS, which possess TCR sequences proven to recognize viral and intracellular pathogens. These results inform our understanding of iSGS, provide a direction for future discovery, and demonstrate immunologic function in the human proximal airway. Laryngoscope, 131:610-617, 2021.
© 2020 The American Laryngological, Rhinological and Otological Society, Inc.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Histone deacetylase 3 controls a transcriptional network required for B cell maturation.
Stengel KR, Bhaskara S, Wang J, Liu Q, Ellis JD, Sampathi S, Hiebert SW
(2019) Nucleic Acids Res 47: 10612-10627
MeSH Terms: Animals, Antigens, CD19, B-Lymphocytes, Base Sequence, Cell Differentiation, Gene Expression Regulation, Gene Regulatory Networks, Histone Deacetylase Inhibitors, Histone Deacetylases, Lipopolysaccharides, Lymphocyte Activation, Mice, Inbred C57BL, Plasma Cells, Positive Regulatory Domain I-Binding Factor 1, Proto-Oncogene Proteins c-bcl-6, Repressor Proteins, Transcription, Genetic, Up-Regulation
Show Abstract · Added October 25, 2019
Histone deacetylase 3 (Hdac3) is a target of the FDA approved HDAC inhibitors, which are used for the treatment of lymphoid malignancies. Here, we used Cd19-Cre to conditionally delete Hdac3 to define its role in germinal center B cells, which represent the cell of origin for many B cell malignancies. Cd19-Cre-Hdac3-/- mice showed impaired germinal center formation along with a defect in plasmablast production. Analysis of Hdac3-/- germinal centers revealed a reduction in dark zone centroblasts and accumulation of light zone centrocytes. RNA-seq revealed a significant correlation between genes up-regulated upon Hdac3 loss and those up-regulated in Foxo1-deleted germinal center B cells, even though Foxo1 typically activates transcription. Therefore, to determine whether gene expression changes observed in Hdac3-/- germinal centers were a result of direct effects of Hdac3 deacetylase activity, we used an HDAC3 selective inhibitor and examined nascent transcription in germinal center-derived cell lines. Transcriptional changes upon HDAC3 inhibition were enriched for light zone gene signatures as observed in germinal centers. Further comparison of PRO-seq data with ChIP-seq/exo data for BCL6, SMRT, FOXO1 and H3K27ac identified direct targets of HDAC3 function including CD86, CD83 and CXCR5 that are likely responsible for driving the light zone phenotype observed in vivo.
© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
1 Communities
0 Members
0 Resources
18 MeSH Terms
Editorial: Role of CD1- and MR1-Restricted T Cells in Immunity and Disease.
Iwabuchi K, Van Kaer L
(2019) Front Immunol 10: 1837
MeSH Terms: Animals, Antigens, CD1, Histocompatibility Antigens Class I, Humans, Minor Histocompatibility Antigens, Mucosal-Associated Invariant T Cells, Natural Killer T-Cells, Receptors, Antigen, T-Cell, T-Lymphocytes
Added March 3, 2020
0 Communities
1 Members
0 Resources
9 MeSH Terms
NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines.
van Montfoort N, Borst L, Korrer MJ, Sluijter M, Marijt KA, Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, André P, Wagtmann N, Welters MJP, Kim YJ, Piersma SJ, van der Burg SH, van Hall T
(2018) Cell 175: 1744-1755.e15
MeSH Terms: Animals, Antibodies, Neoplasm, Antigens, CD, CD8-Positive T-Lymphocytes, Cancer Vaccines, Cell Line, Tumor, Histocompatibility Antigens Class I, Humans, Immunity, Cellular, Integrin alpha Chains, Mice, NK Cell Lectin-Like Receptor Subfamily C, Neoplasm Proteins, Neoplasms, Experimental, Vaccination
Show Abstract · Added December 11, 2020
Tumor-infiltrating CD8 T cells were found to frequently express the inhibitory receptor NKG2A, particularly in immune-reactive environments and after therapeutic cancer vaccination. High-dimensional cluster analysis demonstrated that NKG2A marks a unique immune effector subset preferentially co-expressing the tissue-resident CD103 molecule, but not immune checkpoint inhibitors. To examine whether NKG2A represented an adaptive resistance mechanism to cancer vaccination, we blocked the receptor with an antibody and knocked out its ligand Qa-1, the conserved ortholog of HLA-E, in four mouse tumor models. The impact of therapeutic vaccines was greatly potentiated by disruption of the NKG2A/Qa-1 axis even in a PD-1 refractory mouse model. NKG2A blockade therapy operated through CD8 T cells, but not NK cells. These findings indicate that NKG2A-blocking antibodies might improve clinical responses to therapeutic cancer vaccines.
Copyright © 2018 Elsevier Inc. All rights reserved.
2 Communities
0 Members
0 Resources
MeSH Terms
Enrichment and detection of bone disseminated tumor cells in models of low tumor burden.
Sowder ME, Johnson RW
(2018) Sci Rep 8: 14299
MeSH Terms: Animals, Antigens, CD, Bone Marrow, Bone and Bones, Estradiol, Humans, MCF-7 Cells, Mice, Inbred BALB C, Mice, Nude, Models, Biological, Neoplasms, Osteolysis, Time Factors, Tumor Burden
Show Abstract · Added March 26, 2019
Breast cancer cells frequently home to the bone, but the mechanisms controlling tumor colonization of the bone marrow remain unclear. We report significant enrichment of bone-disseminated estrogen receptor positive human MCF7 cells by 17 β-estradiol (E2) following intracardiac inoculation. Using flow cytometric and quantitative PCR approaches, tumor cells were detected in >80% of MCF7 tumor-inoculated mice, regardless of E2, suggesting that E2 is not required for MCF7 dissemination to the bone marrow. Furthermore, we propose two additional models in which to study prolonged latency periods by bone-disseminated tumor cells: murine D2.0R and human SUM159 breast carcinoma cells. Tumor cells were detected in bone marrow of up to 100% of D2.0R and SUM159-inoculated mice depending on the detection method. These findings establish novel models of bone colonization in which to study mechanisms underlying tumor cell seeding to the marrow and prolonged latency, and provide highly sensitive methods to detect these rare events.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Matrix stiffness regulates vascular integrity through focal adhesion kinase activity.
Wang W, Lollis EM, Bordeleau F, Reinhart-King CA
(2019) FASEB J 33: 1199-1208
MeSH Terms: Adherens Junctions, Animals, Antigens, CD, Cadherins, Capillary Permeability, Chick Embryo, Endothelium, Vascular, Enzyme Activation, Extracellular Matrix, Female, Focal Adhesion Protein-Tyrosine Kinases, Human Umbilical Vein Endothelial Cells, Humans, Mice, Mice, Transgenic, Phosphorylation, Protein Transport, Tyrosine, src-Family Kinases
Show Abstract · Added April 10, 2019
Tumor vasculature is known to be more permeable than the vasculature found in healthy tissue, which in turn can lead to a more aggressive tumor phenotype and impair drug delivery into tumors. While the stiffening of the stroma surrounding solid tumors has been reported to increase vascular permeability, the mechanism of this process remains unclear. Here, we utilize an in vitro model of tumor stiffening, ex ovo culture, and a mouse model to investigate the molecular mechanism by which matrix stiffening alters endothelial barrier function. Our data indicate that the increased endothelial permeability caused by heightened matrix stiffness can be prevented by pharmaceutical inhibition of focal adhesion kinase (FAK) both in vitro and ex ovo. Matrix stiffness-mediated FAK activation determines Src localization to cell-cell junctions, which then induces increased vascular endothelial cadherin phosphorylation both in vitro and in vivo. Endothelial cells in stiff tumors have more activated Src and higher levels of phosphorylated vascular endothelial cadherin at adherens junctions compared to endothelial cells in more compliant tumors. Altogether, our data indicate that matrix stiffness regulates endothelial barrier integrity through FAK activity, providing one mechanism by which extracellular matrix stiffness regulates endothelial barrier function. Additionally, our work also provides further evidence that FAK is a promising potential target for cancer therapy because FAK plays a critical role in the regulation of endothelial barrier integrity.-Wang, W., Lollis, E. M., Bordeleau, F., Reinhart-King, C. A. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Consider Changing the Horse for Your CAR-T?
Wilson MH
(2018) Mol Ther 26: 1873-1874
MeSH Terms: Animals, Antigens, CD19, Heterografts, Horses, Immunoglobulin G, Immunotherapy, Adoptive, T-Lymphocytes
Added December 13, 2018
0 Communities
1 Members
0 Resources
7 MeSH Terms
Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model.
Lee SW, Park HJ, Van Kaer L, Hong S, Hong S
(2018) Sci Rep 8: 10081
MeSH Terms: Animals, Antigens, CD1d, Cell Polarity, Dendritic Cells, Disease Models, Animal, Galactosylceramides, Graphite, Humans, Inflammation, Intraepithelial Lymphocytes, Lymphocyte Activation, Mice, Nanotubes, Carbon, Natural Killer T-Cells, Sepsis, Toll-Like Receptor 4, Transforming Growth Factor beta
Show Abstract · Added March 26, 2019
Graphene oxide (GO) modulates the functions of antigen-presenting cells including dendritic cells (DCs). Although carbon nanotubes affect expression of the MHC class I-like CD1d molecule, whether GO can influence immune responses of CD1d-dependent invariant natural killer T (iNKT) cells remains unclear. Here, we investigated the impact of GO on inflammatory responses mediated by α-galactosylceramide (α-GalCer), an iNKT cell agonist. We found that in vivo GO treatment substantially inhibited the capacity of α-GalCer to induce the iNKT cell-mediated trans-activation of and cytokine production by innate and innate-like cells, including DCs, macrophages, NK cells, and γδ T cells. Such effects of GO on α-GalCer-induced inflammatory responses closely correlated with iNKT cell polarization towards TGFβ production, which also explains the capacity of GO to expand regulatory T cells. Interestingly, the absence of TLR4, a receptor for GO, failed to downregulate, and instead partially enhanced the anti-inflammatory activity of GO against α-GalCer-elicited responses, implying negative effects of TLR4 signaling on the anti-inflammatory properties of GO. By employing an α-GalCer-induced sepsis model, we further demonstrated that GO treatment significantly protected mice from α-GalCer-induced lethality. Taken together, we provide strong evidence that GO holds promise as an adjuvant to modulate iNKT cell responses for immunotherapy.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Insulin exits skeletal muscle capillaries by fluid-phase transport.
Williams IM, Valenzuela FA, Kahl SD, Ramkrishna D, Mezo AR, Young JD, Wells KS, Wasserman DH
(2018) J Clin Invest 128: 699-714
MeSH Terms: Animals, Antigens, CD, Biological Transport, Capillaries, Diabetes Mellitus, Glucose, Glucose Clamp Technique, Humans, Hyperinsulinism, Image Processing, Computer-Assisted, Insulin, Intravital Microscopy, Kinetics, Male, Mice, Mice, Inbred C57BL, Models, Theoretical, Muscle, Skeletal, Protein Binding, Receptor, Insulin, Rhodamines
Show Abstract · Added March 14, 2018
Before insulin can stimulate myocytes to take up glucose, it must first move from the circulation to the interstitial space. The continuous endothelium of skeletal muscle (SkM) capillaries restricts insulin's access to myocytes. The mechanism by which insulin crosses this continuous endothelium is critical to understand insulin action and insulin resistance; however, methodological obstacles have limited understanding of endothelial insulin transport in vivo. Here, we present an intravital microscopy technique to measure the rate of insulin efflux across the endothelium of SkM capillaries. This method involves development of a fully bioactive, fluorescent insulin probe, a gastrocnemius preparation for intravital microscopy, an automated vascular segmentation algorithm, and the use of mathematical models to estimate endothelial transport parameters. We combined direct visualization of insulin efflux from SkM capillaries with modeling of insulin efflux kinetics to identify fluid-phase transport as the major mode of transendothelial insulin efflux in mice. Model-independent experiments demonstrating that insulin movement is neither saturable nor affected by insulin receptor antagonism supported this result. Our finding that insulin enters the SkM interstitium by fluid-phase transport may have implications in the pathophysiology of SkM insulin resistance as well as in the treatment of diabetes with various insulin analogs.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension.
Suzuki T, Carrier EJ, Talati MH, Rathinasabapathy A, Chen X, Nishimura R, Tada Y, Tatsumi K, West J
(2018) Am J Physiol Lung Cell Mol Physiol 314: L118-L126
MeSH Terms: Animals, Antigens, CD, Cadherins, Cells, Cultured, Endothelium, Vascular, Epithelial-Mesenchymal Transition, Female, Gene Expression Profiling, Humans, Hypertension, Pulmonary, Mice, Mice, Inbred C57BL, Mice, Transgenic, Pulmonary Artery
Show Abstract · Added March 26, 2019
Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose polarity and cell-to cell contacts, and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). However, the characteristics of cells which have undergone EndMT cells in vivo have not been reported and so remain unclear. To study this, sugen5416 and hypoxia (SuHx)-induced PAH was established in Cdh5-Cre/Gt(ROSA)26Sor/J double transgenic mice, in which GFP was stably expressed in pan-endothelial cells. After 3 wk of SuHx, flow cytometry and immunohistochemistry demonstrated CD144-negative and GFP-positive cells (complete EndMT cells) possessed higher proliferative and migratory activity compared with other mesenchymal cells. While CD144-positive and α-smooth muscle actin (α-SMA)-positive cells (partial EndMT cells) continued to express endothelial progenitor cell markers, complete EndMT cells were Sca-1-rich mesenchymal cells with high proliferative and migratory ability. When transferred in fibronectin-coated chamber slides containing smooth muscle media, α-SMA robustly expressed in these cells compared with cEndMT cells that were grown in maintenance media. Demonstrating additional paracrine effects, conditioned medium from isolated complete EndMT cells induced enhanced mesenchymal proliferation and migration and increased angiogenesis compared with conditioned medium from resident mesenchymal cells. Overall, these findings show that EndMT cells could contribute to the pathogenesis of PAH both directly, by transformation into smooth muscle-like cells with higher proliferative and migratory potency, and indirectly, through paracrine effects on vascular intimal and medial proliferation.
0 Communities
2 Members
0 Resources
MeSH Terms