Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 199

Publication Record

Connections

High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension.
Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, Warden C, Pasic L, Himmel LE, Washington MK, Revetta FL, Zhao S, Kumaresan S, Scholz MB, Tang Z, Chen G, Reilly MP, Kirabo A
(2019) JCI Insight 5:
MeSH Terms: Adolescent, Adoptive Transfer, Adult, Angiotensin II, Animals, Aorta, Bacteria, Blood Pressure, CD11c Antigen, Colon, Cytokines, Dendritic Cells, Disease Models, Animal, Dysbiosis, Female, Gastrointestinal Microbiome, Humans, Hypertension, Inflammation, Lipids, Lymph Nodes, Male, Mice, Mice, Inbred C57BL, Middle Aged, Myeloid Cells, Peyer's Patches, RNA, Ribosomal, 16S, Sodium Chloride, Sodium Chloride, Dietary, Young Adult
Show Abstract · Added March 3, 2020
Excess dietary salt contributes to inflammation and hypertension via poorly understood mechanisms. Antigen presenting cells including dendritic cells (DCs) play a key role in regulating intestinal immune homeostasis in part by surveying the gut epithelial surface for pathogens. Previously, we found that highly reactive γ-ketoaldehydes or isolevuglandins (IsoLGs) accumulate in DCs and act as neoantigens, promoting an autoimmune-like state and hypertension. We hypothesized that excess dietary salt alters the gut microbiome leading to hypertension and this is associated with increased immunogenic IsoLG-adduct formation in myeloid antigen presenting cells. To test this hypothesis, we performed fecal microbiome analysis and measured blood pressure of healthy human volunteers with salt intake above or below the American Heart Association recommendations. We also performed 16S rRNA analysis on cecal samples of mice fed normal or high salt diets. In humans and mice, high salt intake was associated with changes in the gut microbiome reflecting an increase in Firmicutes, Proteobacteria and genus Prevotella bacteria. These alterations were associated with higher blood pressure in humans and predisposed mice to vascular inflammation and hypertension in response to a sub-pressor dose of angiotensin II. Mice fed a high salt diet exhibited increased intestinal inflammation including the mesenteric arterial arcade and aorta, with a marked increase in the B7 ligand CD86 and formation of IsoLG-protein adducts in CD11c+ myeloid cells. Adoptive transfer of fecal material from conventionally housed high salt-fed mice to germ-free mice predisposed them to increased intestinal inflammation and hypertension. These findings provide novel insight into the mechanisms underlying inflammation and hypertension associated with excess dietary salt and may lead to interventions targeting the microbiome to prevent and treat this important disease.
0 Communities
1 Members
0 Resources
31 MeSH Terms
Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension.
Dikalov S, Itani H, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, Blackwell T, Massion PP, Harrison DG, Dikalova A
(2019) Am J Physiol Heart Circ Physiol 316: H639-H646
MeSH Terms: Angiotensin II, Animals, Blood Pressure, Calcium Channels, Endothelium, Vascular, Hydrogen Peroxide, Hypertension, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mitochondria, Heart, Oxidative Stress, Superoxide Dismutase, TRPV Cation Channels, Tobacco Smoking, Vasoconstrictor Agents
Show Abstract · Added March 26, 2019
Tobacco smoking is a major risk factor for cardiovascular disease and hypertension. It is associated with the oxidative stress and induces metabolic reprogramming, altering mitochondrial function. We hypothesized that cigarette smoke induces cardiovascular mitochondrial oxidative stress, which contributes to endothelial dysfunction and hypertension. To test this hypothesis, we studied whether the scavenging of mitochondrial HO in transgenic mice expressing mitochondria-targeted catalase (mCAT) attenuates the development of cigarette smoke/angiotensin II-induced mitochondrial oxidative stress and hypertension compared with wild-type mice. Two weeks of exposure of wild-type mice with cigarette smoke increased systolic blood pressure by 17 mmHg, which was similar to the effect of a subpresssor dose of angiotensin II (0.2 mg·kg·day), leading to a moderate increase to the prehypertensive level. Cigarette smoke exposure and a low dose of angiotensin II cooperatively induced severe hypertension in wild-type mice, but the scavenging of mitochondrial HO in mCAT mice completely prevented the development of hypertension. Cigarette smoke and angiotensin II cooperatively induced oxidation of cardiolipin (a specific biomarker of mitochondrial oxidative stress) in wild-type mice, which was abolished in mCAT mice. Cigarette smoke and angiotensin II impaired endothelium-dependent relaxation and induced superoxide overproduction, which was diminished in mCAT mice. To mimic the tobacco smoke exposure, we used cigarette smoke condensate, which induced mitochondrial superoxide overproduction and reduced endothelial nitric oxide (a hallmark of endothelial dysfunction in hypertension). Western blot experiments indicated that tobacco smoke and angiotensin II reduce the mitochondrial deacetylase sirtuin-3 level and cause hyperacetylation of a key mitochondrial antioxidant, SOD2, which promotes mitochondrial oxidative stress. NEW & NOTEWORTHY This work demonstrates tobacco smoking-induced mitochondrial oxidative stress, which contributes to endothelial dysfunction and development of hypertension. We suggest that the targeting of mitochondrial oxidative stress can be beneficial for treatment of pathological conditions associated with tobacco smoking, such as endothelial dysfunction, hypertension, and cardiovascular diseases.
0 Communities
1 Members
0 Resources
16 MeSH Terms
LNK deficiency promotes acute aortic dissection and rupture.
Laroumanie F, Korneva A, Bersi MR, Alexander MR, Xiao L, Zhong X, Van Beusecum JP, Chen Y, Saleh MA, McMaster WG, Gavulic KA, Dale BL, Zhao S, Guo Y, Shyr Y, Perrien DS, Cox NJ, Curci JA, Humphrey JD, Madhur MS
(2018) JCI Insight 3:
MeSH Terms: Adaptor Proteins, Signal Transducing, Aneurysm, Dissecting, Angiotensin II, Animals, Aorta, Aortic Rupture, Disease Models, Animal, Female, Genetic Predisposition to Disease, Homeodomain Proteins, Humans, Male, Mice, Mice, Knockout
Show Abstract · Added April 1, 2019
Aortic dissection (AD) is a life-threatening vascular disease with limited treatment strategies. Here, we show that loss of the GWAS-identified SH2B3 gene, encoding lymphocyte adaptor protein LNK, markedly increases susceptibility to acute AD and rupture in response to angiotensin (Ang) II infusion. As early as day 3 following Ang II infusion, prior to the development of AD, Lnk-/- aortas display altered mechanical properties, increased elastin breaks, collagen thinning, enhanced neutrophil accumulation, and increased MMP-9 activity compared with WT mice. Adoptive transfer of Lnk-/- leukocytes into Rag1-/- mice induces AD and rupture in response to Ang II, demonstrating that LNK deficiency in hematopoietic cells plays a key role in this disease. Interestingly, treatment with doxycycline prevents the early accumulation of aortic neutrophils and significantly reduces the incidence of AD and rupture. PrediXcan analysis in a biobank of more than 23,000 individuals reveals that decreased expression of SH2B3 is significantly associated with increased frequency of AD-related phenotypes (odds ratio 0.81). Thus, we identified a role for LNK in the pathology of AD in experimental animals and humans and describe a new model that can be used to inform both inherited and acquired forms of this disease.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide.
Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, Elijovich F, Laffer CL, Gnecco JS, Noonan J, Maffia P, Jasiewicz-Honkisz B, Czesnikiewicz-Guzik M, Mikolajczyk T, Sliwa T, Dikalov S, Weyand CM, Guzik TJ, Harrison DG
(2018) Cardiovasc Res 114: 1547-1563
MeSH Terms: Aged, Angiotensin II, Animals, Blood Pressure, Case-Control Studies, Cell Communication, Cell Differentiation, Cells, Cultured, Coculture Techniques, Disease Models, Animal, Endothelial Cells, Female, Humans, Hydrogen Peroxide, Hypertension, Interleukin-6, Male, Mechanotransduction, Cellular, Mice, Inbred C57BL, Middle Aged, Monocytes, Nitric Oxide, Phenotype, STAT3 Transcription Factor, Stress, Mechanical
Show Abstract · Added March 26, 2019
Aims - Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function.
Methods and results - Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1β, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3.
Conclusions - These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Angiotensin receptor blocker vs ACE inhibitor effects on HDL functionality in patients on maintenance hemodialysis.
Kaseda R, Tsuchida Y, Gamboa JL, Zhong J, Zhang L, Yang H, Dikalova A, Bian A, Davies S, Fogo AF, Linton MF, Brown NJ, Ikizler TA, Kon V
(2018) Nutr Metab Cardiovasc Dis 28: 582-591
MeSH Terms: Adult, Angiotensin II Type 1 Receptor Blockers, Angiotensin-Converting Enzyme Inhibitors, Biomarkers, Cholesterol, HDL, Double-Blind Method, Female, Humans, Inflammation Mediators, Kidney Failure, Chronic, Male, Middle Aged, Oxidative Stress, Ramipril, Renal Dialysis, Tennessee, Time Factors, Treatment Outcome, Valsartan
Show Abstract · Added August 3, 2018
BACKGROUND AND AIMS - Angiotensin receptor blockers (ARB) and angiotensin converting enzyme inhibitors (ACEI) reduce cardiovascular events in the general population. Maintenance hemodialysis (MHD) patients are at high cardiovascular risk but few studies have directly addressed the comparative efficacy of these drugs. MHD disrupts the normally atheroprotective actions of high density lipoprotein (HDL), therefore, we compared ACEI or ARB treatment on HDL functions in MHD.
METHODS AND RESULTS - HDL was isolated at the starting point (pre) and 3-6 months later (post) in 30 MHD randomly assigned to placebo, ramipril or valsartan. Outcomes included cholesterol efflux, inflammatory cytokine response, effects on Toll-like receptors (TLR), superoxide production, methylarginine and serum amyloid A (SAA) levels. HDL from ARB- or ACEI-treated subjects was more effective in maintaining efflux than HDL of placebo. HDL from ARB- or ACEI-treated subjects but not placebo lessened cellular superoxide production. In contrast, neither ARB nor ACEI improved HDL anti-inflammatory effect. Indeed, HDL of ACEI-treated subjects potentiated the cytokine responses in association with activation of TLR but did not alter the HDL content of methylarginines or SAA.
CONCLUSION - Both ACEI and ARB stabilized HDL cholesterol acceptor function and sustained cellular anti-oxidative effects but not anti-inflammatory effects, and ACEI-treatment instead amplified the HDL inflammatory response. The findings reveal possible utility of antagonizing angiotensin actions in MDH and suggest a possible mechanism for superiority of ARB vs ACEI in the setting of advanced kidney disease.
Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
1 Communities
3 Members
0 Resources
19 MeSH Terms
Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G
(2018) J Biol Chem 293: 876-892
MeSH Terms: Angiotensin II, Animals, COS Cells, Chlorocebus aethiops, HEK293 Cells, Humans, Immunoblotting, Microscopy, Confocal, Mitogen-Activated Protein Kinases, Phosphorylation, Receptors, G-Protein-Coupled, beta-Arrestins
Show Abstract · Added March 14, 2018
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, G-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT angiotensin receptor (ATR). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated ATR in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Acute kidney injury is a risk factor for subsequent proteinuria.
Parr SK, Matheny ME, Abdel-Kader K, Greevy RA, Bian A, Fly J, Chen G, Speroff T, Hung AM, Ikizler TA, Siew ED
(2018) Kidney Int 93: 460-469
MeSH Terms: Acute Kidney Injury, Aged, Angiotensin II Type 1 Receptor Blockers, Angiotensin-Converting Enzyme Inhibitors, Antihypertensive Agents, Blood Pressure, Comorbidity, Databases, Factual, Diabetes Mellitus, Diabetic Nephropathies, Disease Progression, Female, Glomerular Filtration Rate, Hospitalization, Hospitals, Veterans, Humans, Hypertension, Kidney, Male, Middle Aged, Prevalence, Prognosis, Proteinuria, Renal Insufficiency, Chronic, Retrospective Studies, Risk Factors, Severity of Illness Index, Time Factors, United States
Show Abstract · Added November 29, 2018
Acute kidney injury (AKI) is associated with subsequent chronic kidney disease (CKD), but the mechanism is unclear. To clarify this, we examined the association of AKI and new-onset or worsening proteinuria during the 12 months following hospitalization in a national retrospective cohort of United States Veterans hospitalized between 2004-2012. Patients with and without AKI were matched using baseline demographics, comorbidities, proteinuria, estimated glomerular filtration rate, blood pressure, angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker (ACEI/ARB) use, and inpatient exposures linked to AKI. The distribution of proteinuria over one year post-discharge in the matched cohort was compared using inverse probability sampling weights. Subgroup analyses were based on diabetes, pre-admission ACEI/ARB use, and AKI severity. Among the 90,614 matched AKI and non-AKI pairs, the median estimated glomerular filtration rate was 62 mL/min/1.73m. The prevalence of diabetes and hypertension were 48% and 78%, respectively. The odds of having one plus or greater dipstick proteinuria was significantly higher during each month of follow-up in patients with AKI than in patients without AKI (odds ratio range 1.20-1.39). Odds were higher in patients with Stage II or III AKI (odds ratios 1.32-1.81) than in Stage I AKI (odds ratios 1.18-1.32), using non-AKI as the reference group. Results were consistent regardless of diabetes status or baseline ACEI/ARB use. Thus, AKI is a risk factor for incident or worsening proteinuria, suggesting a possible mechanism linking AKI and future CKD. The type of proteinuria, physiology, and clinical significance warrant further study as a potentially modifiable risk factor in the pathway from AKI to CKD.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
29 MeSH Terms
Intracellular Staining and Flow Cytometry to Identify Lymphocyte Subsets within Murine Aorta, Kidney and Lymph Nodes in a Model of Hypertension.
Laroumanie F, Dale BL, Saleh MA, Madhur MS
(2017) J Vis Exp :
MeSH Terms: Angiotensin II, Animals, Aorta, Cytokines, Disease Models, Animal, Flow Cytometry, Hypertension, Kidney, Lymph Nodes, Mice, Staining and Labeling, T-Lymphocyte Subsets
Show Abstract · Added September 7, 2017
It is now well known that T lymphocytes play a critical role in the development of several cardiovascular diseases. For example, studies from our group have shown that hypertension is associated with an excessive accumulation of T cells in the vessels and kidney during the development of experimental hypertension. Once in these tissues, T cells produce several cytokines that affect both vascular and renal function leading to vasoconstriction and sodium and water retention. To fully understand how T cells cause cardiovascular and renal diseases, it is important to be able to identify and quantify the specific T cell subsets present in these tissues. T cell subsets are defined by a combination of surface markers, the cytokines they secrete, and the transcription factors they express. The complexity of the T cell population makes flow cytometry and intracellular staining an invaluable technique to dissect the phenotypes of the lymphocytes present in tissues. Here, we provide a detailed protocol to identify the surface and intracellular markers (cytokines and transcription factors) in T cells isolated from murine kidney, aorta and aortic draining lymph nodes in a model of angiotensin II induced hypertension. The following steps are described in detail: isolation of the tissues, generation of the single cell suspensions, ex vivo stimulation, fixation, permeabilization and staining. In addition, several fundamental principles of flow cytometric analyses including choosing the proper controls and appropriate gating strategies are discussed.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Urine Eicosanoids in the Metabolic Abnormalities, Telmisartan, and HIV Infection (MATH) Trial.
Le CN, Hulgan T, Tseng CH, Milne GL, Lake JE
(2017) PLoS One 12: e0170515
MeSH Terms: Adipose Tissue, Adult, Angiotensin II Type 1 Receptor Blockers, Anthropometry, Anti-HIV Agents, Antiretroviral Therapy, Highly Active, Benzimidazoles, Benzoates, Body Fat Distribution, Eicosanoids, Female, HIV Infections, Humans, Inflammation, Lipodystrophy, Male, Middle Aged, Oxidative Stress, Pilot Projects, Prospective Studies, Sex Factors, Telmisartan, Waist-Hip Ratio
Show Abstract · Added December 11, 2019
OBJECTIVES - Arachidonic acid metabolites (eicosanoids) reflect oxidative stress and vascular health and have been associated with anthropometric measures and sex differences in cross-sectional analyses of HIV-infected (HIV+) persons. Telmisartan is an angiotensin receptor blocker and PPAR-γ agonist with potential anti-inflammatory and metabolic benefits. We assessed telmisartan's effects on urine eicosanoids among HIV+ adults with central adiposity on suppressive antiretroviral therapy enrolled in a prospective clinical trial.
METHODS - Thirty-five HIV+ adults (15 women; 20 men) completed 24 weeks of open-label oral telmisartan 40mg daily. Lumbar computed tomography quantified visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue. Urine F2-isoprostane (F2-IsoP), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB-M) were quantified at baseline and 24 weeks using gas/liquid chromatography-mass spectroscopy. Mann-Whitney-U tests compared sub-group differences; Spearman's rho assessed correlations between clinical factors and eicosanoid levels.
RESULTS - Median PGE-M increased on telmisartan (p<0.01), with greater changes in men (+4.1 [p = 0.03] vs. +1.0 ng/mg cr in women; between-group p = 0.25) and participants losing >5% VAT (+3.7 ng/mg cr, p<0.01) and gaining >5% SAT (+1.7 ng/mg cr, p = 0.04). Median baseline F2-IsoP and TxB-M were slightly higher in women (both between-group p = 0.08) and did not change on telmisartan.
CONCLUSIONS - Urine PGE-M increased with 24 weeks of telmisartan in virally suppressed, HIV+ adults with central adiposity. Associations with favorable fat redistribution suggest increased PGE-M may reflect a beneficial response.
0 Communities
1 Members
0 Resources
MeSH Terms
Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1.
Kraemer MP, Choi H, Reese J, Lamb FS, Breyer RM
(2016) Vascul Pharmacol 84: 47-54
MeSH Terms: Angiotensin II, Animals, Calcium, Dinoprostone, Dose-Response Relationship, Drug, Femoral Artery, Focal Adhesion Kinase 2, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptor, Angiotensin, Type 1, Receptors, Prostaglandin E, EP3 Subtype, Vasoconstriction, rho-Associated Kinases
Show Abstract · Added April 6, 2017
Prostaglandin E2 (PGE2), a cyclooxygenase metabolite that generally acts as a systemic vasodepressor, has been shown to have vasopressor effects under certain physiologic conditions. Previous studies have demonstrated that PGE2 receptor signaling modulates angiotensin II (Ang II)-induced hypertension, but the interaction of these two systems in the regulation of vascular reactivity is incompletely characterized. We hypothesized that Ang II, a principal effector of the renin-angiotensin-aldosterone system, potentiates PGE2-mediated vasoconstriction. Here we demonstrate that pre-treatment of arterial rings with 1nM Ang II potentiated PGE2-evoked constriction in a concentration dependent manner (AUC-Ang II 2.778±2.091, AUC+Ang II 22.830±8.560, ***P<0.001). Using genetic deletion models and pharmacological antagonists, we demonstrate that this potentiation effect is mediated via concurrent signaling between the angiotensin II receptor 1 (AT1) and the PGE2 E-prostanoid receptor 3 (EP3) in the mouse femoral artery. EP3 receptor-mediated vasoconstriction is shown to be dependent on extracellular calcium in combination with proline-rich tyrosine kinase 2 (Pyk2) and Rho-kinase. Thus, our findings reveal a novel mechanism through which Ang II and PGE2 regulate peripheral vascular reactivity.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
15 MeSH Terms