Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 21

Publication Record

Connections

Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.
Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD
(2018) Nucleic Acids Res 46: 1331-1344
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Biological Evolution, Cdc20 Proteins, Cell Cycle, Gene Expression Regulation, Fungal, Histone-Lysine N-Methyltransferase, Histones, Humans, Lysine, Methylation, Methyltransferases, Nocodazole, Protein Processing, Post-Translational, Proteolysis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Tubulin Modulators
Show Abstract · Added October 30, 2019
Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.
0 Communities
1 Members
0 Resources
MeSH Terms
CDK-1 Inhibition in G2 Stabilizes Kinetochore-Microtubules in the following Mitosis.
Gayek AS, Ohi R
(2016) PLoS One 11: e0157491
MeSH Terms: Anaphase, CDC2 Protein Kinase, Cell Line, Transformed, Chromosomes, Human, Cyclin-Dependent Kinases, G2 Phase, Humans, Kinesin, Kinetochores, Microtubules
Show Abstract · Added April 18, 2017
Cell proliferation is driven by cyclical activation of cyclin-dependent kinases (CDKs), which produce distinct biochemical cell cycle phases. Mitosis (M phase) is orchestrated by CDK-1, complexed with mitotic cyclins. During M phase, chromosomes are segregated by a bipolar array of microtubules called the mitotic spindle. The essential bipolarity of the mitotic spindle is established by the kinesin-5 Eg5, but factors influencing the maintenance of spindle bipolarity are not fully understood. Here, we describe an unexpected link between inhibiting CDK-1 before mitosis and bipolar spindle maintenance. Spindles in human RPE-1 cells normally collapse to monopolar structures when Eg5 is inhibited at metaphase. However, we found that inhibition of CDK-1 in the G2 phase of the cell cycle improved the ability of RPE-1 cells to maintain spindle bipolarity without Eg5 activity in the mitosis immediately after release from CDK-1 inhibition. This improved bipolarity maintenance correlated with an increase in the stability of kinetochore-microtubules, the subset of microtubules that link chromosomes to the spindle. The improvement in bipolarity maintenance after CDK-1 inhibition in G2 required both the kinesin-12 Kif15 and increased stability of kinetochore-microtubules. Consistent with increased kinetochore-microtubule stability, we find that inhibition of CDK-1 in G2 impairs mitotic fidelity by increasing the incidence of lagging chromosomes in anaphase. These results suggest that inhibition of CDK-1 in G2 causes unpredicted effects in mitosis, even after CDK-1 inhibition is relieved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin.
Landino J, Ohi R
(2016) Curr Biol 26: 698-706
MeSH Terms: Actin Cytoskeleton, Actins, Anaphase, Cell Division, Cell Line, Cytokinesis, HeLa Cells, Humans, Microtubules, Myosin Type II
Show Abstract · Added April 18, 2017
The final steps of cell division are tightly coordinated in space and time, but whether mechanisms exist to couple the actin and microtubule (MT) cytoskeletons during anaphase and cytokinesis (C phase) is largely unknown. During anaphase, MTs are incorporated into an anti-parallel array termed the spindle midzone (midzone MTs), whereas F-actin and non-muscle myosin II, together with other factors, organize into the cleavage furrow [1]. Previous studies in somatic cells have shown that midzone MTs become highly stable after furrows have begun ingression [2], indicating that furrow-to-MT communication may occur. Midzone formation is also inhibited in fly spermatocytes that fail to form a cleavage furrow [3] and during monopolar cytokinesis when myosin contractility is blocked by blebbistatin [4]. We show here that midzone MT stabilization is dependent on actomyosin contraction, suggesting that there is active coordination between furrow ingression and microtubule dynamics. Midzone microtubule stabilization also depends on the kinase activity of Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC), uncovering a feedback mechanism that couples furrowing with microtubule dynamics. We further show that the CPC scaffolding protein INCENP (inner centromere protein) binds actin, an interaction that is important for cytokinesis and for midzone MT stabilization following furrow ingression. Stabilization of midzone MTs with low amounts of Taxol rescues cytokinesis in INCENP actin-binding mutant-expressing cells. Collectively, our work demonstrates that the actin and microtubule cytoskeletons are coordinated during cytokinesis and suggests that the CPC is integral for coupling furrow ingression with midzone microtubule stabilization.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Histone H2B ubiquitination promotes the function of the anaphase-promoting complex/cyclosome in Schizosaccharomyces pombe.
Elmore ZC, Beckley JR, Chen JS, Gould KL
(2014) G3 (Bethesda) 4: 1529-38
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Endopeptidases, Histones, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Ubiquitination
Show Abstract · Added January 20, 2015
Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.
Copyright © 2014 Elmore et al.
0 Communities
1 Members
0 Resources
6 MeSH Terms
The anaphase promoting complex contributes to the degradation of the S. cerevisiae telomerase recruitment subunit Est1p.
Ferguson JL, Chao WC, Lee E, Friedman KL
(2013) PLoS One 8: e55055
MeSH Terms: Amino Acid Sequence, Anaphase-Promoting Complex-Cyclosome, Animals, Cdh1 Proteins, G1 Phase, Mutation, Protein Stability, Proteolysis, Recombinant Proteins, S Phase, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Telomerase, Ubiquitin-Protein Ligase Complexes, Ubiquitination
Show Abstract · Added March 5, 2014
Telomerase is a multi-subunit enzyme that reverse transcribes telomere repeats onto the ends of linear eukaryotic chromosomes and is therefore critical for genome stability. S. cerevisiae telomerase activity is cell-cycle regulated; telomeres are not elongated during G1 phase. Previous work has shown that Est1 protein levels are low during G1 phase, preventing telomerase complex assembly. However, the pathway targeting Est1p for degradation remained uncharacterized. Here, we show that Est1p stability through the cell cycle mirrors that of Clb2p, a known target of the Anaphase Promoting Complex (APC). Indeed, Est1p is stabilized by mutations in both essential and non-essential components of the APC. Mutations of putative Destruction boxes (D-boxes), regions shown to be important for recognition of known APC substrates, stabilize Est1p, suggesting that Est1p is likely to be targeted for degradation directly by the APC. However, we do not detect degradation or ubiquitination of recombinant Est1p by the APC in vitro, suggesting either that the recombinant protein lacks necessary post-translational modification and/or conformation, or that the APC affects Est1p degradation by an indirect mechanism. Together, these studies shed light on the regulation of yeast telomerase assembly and demonstrate a new connection between telomere maintenance and cell cycle regulation pathways.
0 Communities
2 Members
0 Resources
15 MeSH Terms
The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning.
Mana-Capelli S, McLean JR, Chen CT, Gould KL, McCollum D
(2012) Mol Biol Cell 23: 4592-600
MeSH Terms: Anaphase, Cytokinesis, Microtubule-Associated Proteins, Microtubule-Organizing Center, Microtubules, Mitosis, Phosphorylation, Protein Kinases, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Signal Transduction, Spindle Apparatus, Telophase
Show Abstract · Added March 5, 2014
In Schizosaccharomyces pombe, a late mitotic kinase pathway called the septation initiation network (SIN) triggers cytokinesis. Here we show that the SIN is also involved in regulating anaphase spindle elongation and telophase nuclear positioning via inhibition of Klp2, a minus end-directed kinesin-14. Klp2 is known to localize to microtubules (MTs) and have roles in interphase nuclear positioning, mitotic chromosome alignment, and nuclear migration during karyogamy (nuclear fusion during mating). We observe SIN-dependent disappearance of Klp2 from MTs in anaphase, and we find that this is mediated by direct phosphorylation of Klp2 by the SIN kinase Sid2, which abrogates loading of Klp2 onto MTs by inhibiting its interaction with Mal3 (EB1 homologue). Disruption of Klp2 MT localization is required for efficient anaphase spindle elongation. Furthermore, when cytokinesis is delayed, SIN inhibition of Klp2 acts in concert with microtubules emanating from the equatorial microtubule-organizing center to position the nuclei away from the cell division site. These results reveal novel functions of the SIN in regulating the MT cytoskeleton and suggest that the SIN may have broader functions in regulating cellular organization in late mitosis than previously realized.
0 Communities
1 Members
0 Resources
13 MeSH Terms
The fission yeast septation initiation network (SIN) kinase, Sid2, is required for SIN asymmetry and regulates the SIN scaffold, Cdc11.
Feoktistova A, Morrell-Falvey J, Chen JS, Singh NS, Balasubramanian MK, Gould KL
(2012) Mol Biol Cell 23: 1636-45
MeSH Terms: Anaphase, Cell Cycle Proteins, Mitosis, Phosphorylation, Protein Kinases, Protein Processing, Post-Translational, Protein-Serine-Threonine Kinases, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Signal Transduction
Show Abstract · Added December 5, 2013
The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase-mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.
1 Communities
1 Members
0 Resources
10 MeSH Terms
State of the APC/C: organization, function, and structure.
McLean JR, Chaix D, Ohi MD, Gould KL
(2011) Crit Rev Biochem Mol Biol 46: 118-36
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Animals, Catalysis, Cell Cycle Proteins, Cell Nucleus, Humans, Meiosis, Microscopy, Electron, Mitosis, Models, Biological, Spindle Apparatus, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases
Show Abstract · Added March 5, 2014
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1.
Ohi MD, Feoktistova A, Ren L, Yip C, Cheng Y, Chen JS, Yoon HJ, Wall JS, Huang Z, Penczek PA, Gould KL, Walz T
(2007) Mol Cell 28: 871-85
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Cdc20 Proteins, Cell Cycle Proteins, Chromatography, Affinity, Cryoelectron Microscopy, Immunoblotting, Mitosis, Models, Molecular, Mutagenesis, Site-Directed, Mutation, Protein Conformation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added March 5, 2014
The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit E3 ubiquitin (Ub) ligase required to signal the degradation of key cell-cycle regulators. Using single particle cryo-electron microscopy (cryo-EM), we have determined a three-dimensional (3D) structure of the core APC/C from Schizosaccharomyces pombe bound to the APC/C activator Slp1/Cdc20. At the 27 A resolution of our density map, the APC/C is a triangular-shaped structure, approximately 19x17x15 nm in size, with a deep internal cavity and a prominent horn-like protrusion emanating from a lip of the cavity. Using antibody labeling and mutant analysis, we have localized 12 of 13 core APC/C components, as well as the position of the activator Slp1, enabling us to propose a structural model of APC/C organization. Comparison of the APC/C with another multiprotein E3 ligase, the SCF complex, uncovers remarkable structural similarities.
0 Communities
2 Members
0 Resources
16 MeSH Terms
SCFCdc4-mediated degradation of the Hac1p transcription factor regulates the unfolded protein response in Saccharomyces cerevisiae.
Pal B, Chan NC, Helfenbaum L, Tan K, Tansey WP, Gething MJ
(2007) Mol Biol Cell 18: 426-40
MeSH Terms: Amino Acid Motifs, Amino Acid Sequence, Anaphase-Promoting Complex-Cyclosome, Basic-Leucine Zipper Transcription Factors, Binding Sites, Cell Cycle Proteins, Cell Nucleus, Cell Survival, Cyclin-Dependent Kinase 8, Cyclin-Dependent Kinases, F-Box Proteins, Mitogen-Activated Protein Kinase Kinases, Molecular Sequence Data, Mutation, Proteasome Endopeptidase Complex, Protein Folding, Repressor Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Serine, Transcription Factors, Two-Hybrid System Techniques, Ubiquitin, Ubiquitin-Conjugating Enzymes, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases
Show Abstract · Added March 10, 2014
The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of approximately 5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of approximately 1.5 min. Here, we have shown that Hac1p harbors a functional PEST degron and that degradation of Hac1p by the proteasome involves the E2 ubiquitin-conjugating enzyme Ubc3/Cdc34p and the SCF(Cdc4) E3 complex. Consistent with the known nuclear localization of Cdc4p, rapid degradation of Hac1p requires the presence of a functional nuclear localization sequence, which we demonstrated to involve basic residues in the sequence (29)RKRAKTK(35). Two-hybrid analysis demonstrated that the PEST-dependent interaction of Hac1p with Cdc4p requires Ser146 and Ser149. Turnover of Hac1p may be dependent on transcription because it is inhibited in cell mutants lacking Srb10 kinase, a component of the SRB/mediator module of the RNA polymerase II holoenzyme. Stabilization of Hac1p by point mutation or deletion, or as the consequence of defects in components of the degradation pathway, results in increased unfolded protein response element-dependent transcription and improved cell viability under ER stress conditions.
0 Communities
1 Members
0 Resources
26 MeSH Terms