Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 429

Publication Record

Connections

Central EP3 (E Prostanoid 3) Receptors Mediate Salt-Sensitive Hypertension and Immune Activation.
Xiao L, Itani HA, do Carmo LS, Carver LS, Breyer RM, Harrison DG
(2019) Hypertension 74: 1507-1515
MeSH Terms: Adaptive Immunity, Analysis of Variance, Animals, Biomarkers, Biopsy, Needle, Brain, Dinoprostone, Disease Models, Animal, Female, Flow Cytometry, Hypertension, Immunohistochemistry, Male, Mice, Mice, Inbred C57BL, NG-Nitroarginine Methyl Ester, Random Allocation, Real-Time Polymerase Chain Reaction, Receptors, Prostaglandin E, EP3 Subtype, Sodium, Dietary
Show Abstract · Added December 3, 2019
We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive isoLG (isolevuglandin) accumulate in dendritic cells (DCs). PGE (Prostaglandin E2) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE via its EP (E prostanoid) 3 receptor contributes to DC activation in hypertension. EP3 mice and wild-type littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester hydrochloride in drinking water, followed by a 2-week washout period, and a subsequent 4% high-salt diet for 3 weeks. In wild-type mice, this protocol increased systolic pressure from 123±2 to 148±8 mm Hg (<0.05). This was associated with marked renal inflammation and a striking accumulation of isoLG adducts in splenic DCs. However, the increases in blood pressure, renal T-cell infiltration, and DC isoLG formation were completely prevented in EP3 mice. Similar protective effects were also observed in wild-type mice that received intracerebroventricular injection of a lentiviral vector encoding shRNA targeting the EP3 receptor. Further, in vitro experiments indicated that PGE also acts directly on DCs via its EP1 receptors to stimulate intracellular isoLG formation. Together, these findings provide new insight into how EP receptors in both the central nervous system and peripherally on DCs promote inflammation in salt-induced hypertension.
1 Communities
0 Members
0 Resources
20 MeSH Terms
MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21.
Vilgelm AE, Saleh N, Shattuck-Brandt R, Riemenschneider K, Slesur L, Chen SC, Johnson CA, Yang J, Blevins A, Yan C, Johnson DB, Al-Rohil RN, Halilovic E, Kauffmann RM, Kelley M, Ayers GD, Richmond A
(2019) Sci Transl Med 11:
MeSH Terms: Analysis of Variance, Animals, Blotting, Western, Cell Cycle, Cell Survival, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Cyclin-Dependent Kinase Inhibitor p21, DNA Replication, Dimethyl Sulfoxide, Humans, Immunoprecipitation, MCF-7 Cells, Melanoma, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Mice, Nude, Proteomics, Proto-Oncogene Proteins c-mdm2, Radioimmunoprecipitation Assay
Show Abstract · Added September 27, 2019
Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Three-Year Findings on Intraocular Pressure Changes in The Prospective Retinal and Optic Nerve Vitrectomy Evaluation (PROVE) Study.
Patel SN, Kim SJ, Lalezary M, Shah R, Kuchtey RW, Joos KM, Kammer JA, Cherney EF
(2019) Ophthalmic Surg Lasers Imaging Retina 50: 371-376
MeSH Terms: Adult, Aged, Analysis of Variance, Female, Glaucoma, Humans, Intraocular Pressure, Male, Middle Aged, Prospective Studies, Pseudophakia, Vitrectomy
Show Abstract · Added March 24, 2020
BACKGROUND AND OBJECTIVE - This paper reports 3-year intraocular pressure (IOP) outcomes of the Prospective Retinal and Optic Nerve Vitrectomy Evaluation (PROVE) study.
PATIENTS AND METHODS - The prospective, controlled, observational study included 80 eyes of 40 participants undergoing routine pars plana vitrectomy. Study patients underwent preoperative evaluation and multimodal testing of the study (surgical) and fellow (control) eye. This testing was repeated at 3 months postoperatively and then annually for 3 years.
RESULTS - Thirty-two of 40 patients (80%) completed 3-year follow-up. At 3 years postoperatively, there was no difference in IOP measurements in surgical eyes overall from baseline (P = .36). Subgroup analysis of pseudophakic eyes at baseline showed a significant elevation in IOP from 14.3 mm Hg ± 2.9 mm Hg at baseline to 16.8 mm Hg ± 3.2 mm Hg at 3-year follow-up (P < .029). Fellow eyes did not experience a significant change from baseline.
CONCLUSION - The authors' 3-year results show that IOP is consistently and significantly elevated in pseudophakic eyes compared to baseline following routine vitrectomy. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:371-376.].
Copyright 2019, SLACK Incorporated.
0 Communities
1 Members
0 Resources
MeSH Terms
Association of Thyroid Function Genetic Predictors With Atrial Fibrillation: A Phenome-Wide Association Study and Inverse-Variance Weighted Average Meta-analysis.
Salem JE, Shoemaker MB, Bastarache L, Shaffer CM, Glazer AM, Kroncke B, Wells QS, Shi M, Straub P, Jarvik GP, Larson EB, Velez Edwards DR, Edwards TL, Davis LK, Hakonarson H, Weng C, Fasel D, Knollmann BC, Wang TJ, Denny JC, Ellinor PT, Roden DM, Mosley JD
(2019) JAMA Cardiol 4: 136-143
MeSH Terms: Aged, Analysis of Variance, Atrial Fibrillation, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Hyperthyroidism, Hypothyroidism, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Predictive Value of Tests, Risk Factors, Thyroid Function Tests, Thyroid Gland, Thyrotropin
Show Abstract · Added March 26, 2019
Importance - Thyroid hormone levels are tightly regulated through feedback inhibition by thyrotropin, produced by the pituitary gland. Hyperthyroidism is overwhelmingly due to thyroid disorders and is well recognized to contribute to a wide spectrum of cardiovascular morbidity, particularly the increasingly common arrhythmia atrial fibrillation (AF).
Objective - To determine the association between genetically determined thyrotropin levels and AF.
Design, Setting, and Participants - This phenome-wide association study scanned 1318 phenotypes associated with a polygenic predictor of thyrotropin levels identified by a previously published genome-wide association study that included participants of European ancestry. North American individuals of European ancestry with longitudinal electronic health records were analyzed from May 2008 to November 2016. Analysis began March 2018.
Main Outcomes and Measures - Clinical diagnoses associated with a polygenic predictor of thyrotropin levels.
Exposures - Genetically determined thyrotropin levels.
Results - Of 37 154 individuals, 19 330 (52%) were men. The thyrotropin polygenic predictor was positively associated with hypothyroidism (odds ratio [OR], 1.10; 95% CI, 1.07-1.14; P = 5 × 10-11) and inversely associated with diagnoses related to hyperthyroidism (OR, 0.64; 95% CI, 0.54-0.74; P = 2 × 10-8 for toxic multinodular goiter). Among nonthyroid associations, the top association was AF/flutter (OR, 0.93; 95% CI, 0.9-0.95; P = 9 × 10-7). When the analyses were repeated excluding 9801 individuals with any diagnoses of a thyroid-related disease, the AF association persisted (OR, 0.91; 95% CI, 0.88-0.95; P = 2.9 × 10-6). To replicate this association, we conducted an inverse-variance weighted average meta-analysis using AF single-nucleotide variant weights from a genome-wide association study of 17 931 AF cases and 115 142 controls. As in the discovery analyses, each SD increase in predicted thyrotropin was associated with a decreased risk of AF (OR, 0.86; 95% CI, 0.79-0.93; P = 4.7 × 10-4). In a set of AF cases (n = 745) and controls (n = 1680) older than 55 years, directly measured thyrotropin levels that fell within the normal range were inversely associated with AF risk (OR, 0.91; 95% CI, 0.83-0.99; P = .04).
Conclusions and Relevance - This study suggests a role for genetically determined variation in thyroid function within a physiologically accepted normal range as a risk factor for AF. The clinical decision to treat subclinical thyroid disease should incorporate the risk for AF as antithyroid medications to treat hyperthyroidism may reduce AF risk and thyroid hormone replacement for hypothyroidism may increase AF risk.
0 Communities
3 Members
0 Resources
18 MeSH Terms
CalR: A Web-Based Analysis Tool for Indirect Calorimetry Experiments.
Mina AI, LeClair RA, LeClair KB, Cohen DE, Lantier L, Banks AS
(2018) Cell Metab 28: 656-666.e1
MeSH Terms: Analysis of Variance, Animals, Calorimetry, Indirect, Cloud Computing, Data Visualization, Energy Metabolism, Humans, Linear Models, Mice, Obesity, Pulmonary Gas Exchange, Reproducibility of Results, Thermogenesis, Web Browser, Weight Loss, Workflow
Show Abstract · Added May 16, 2019
We report a web-based tool for analysis of experiments using indirect calorimetry to measure physiological energy balance. CalR simplifies the process to import raw data files, generate plots, and determine the most appropriate statistical tests for interpretation. Analysis using the generalized linear model (which includes ANOVA and ANCOVA) allows for flexibility in interpreting diverse experimental designs, including those of obesity and thermogenesis. Users also may produce standardized output files for an experiment that can be shared and subsequently re-evaluated using CalR. This framework will provide the transparency necessary to enhance consistency, rigor, and reproducibility. The CalR analysis software will greatly increase the speed and efficiency with which metabolic experiments can be organized, analyzed per accepted norms, and reproduced and will likely become a standard tool for the field. CalR is accessible at https://CalRapp.org/.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
The proto-oncogene function of Mdm2 in bone.
Olivos DJ, Perrien DS, Hooker A, Cheng YH, Fuchs RK, Hong JM, Bruzzaniti A, Chun K, Eischen CM, Kacena MA, Mayo LD
(2018) J Cell Biochem 119: 8830-8840
MeSH Terms: Analysis of Variance, Animals, Bone Density, Bone Remodeling, Calcification, Physiologic, Cancellous Bone, Cell Line, Tumor, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Inbred DBA, Osteoblasts, Osteoclasts, Osteogenesis, Osteosarcoma, Proto-Oncogene Proteins c-mdm2, Proto-Oncogenes
Show Abstract · Added April 1, 2019
Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2 ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2 ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.
© 2018 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Prefrontal mediation of the reading network predicts intervention response in dyslexia.
Aboud KS, Barquero LA, Cutting LE
(2018) Cortex 101: 96-106
MeSH Terms: Adolescent, Analysis of Variance, Biomarkers, Brain Mapping, Child, Cognition, Dyslexia, Executive Function, Female, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Prefrontal Cortex, Reading, Semantics, Temporal Lobe, Universities
Show Abstract · Added March 14, 2018
A primary challenge facing the development of interventions for dyslexia is identifying effective predictors of intervention response. While behavioral literature has identified core cognitive characteristics of response, the distinction of reading versus executive cognitive contributions to response profiles remains unclear, due in part to the difficulty of segregating these constructs using behavioral outputs. In the current study we used functional neuroimaging to piece apart the mechanisms of how/whether executive and reading network relationships are predictive of intervention response. We found that readers who are responsive to intervention have more typical pre-intervention functional interactions between executive and reading systems compared to nonresponsive readers. These findings suggest that intervention response in dyslexia is influenced not only by domain-specific reading regions, but also by contributions from intervening domain-general networks. Our results make a significant gain in identifying predictive bio-markers of outcomes in dyslexia, and have important implications for the development of personalized clinical interventions.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease.
Petersen K, Van Wouwe N, Stark A, Lin YC, Kang H, Trujillo-Diaz P, Kessler R, Zald D, Donahue MJ, Claassen DO
(2018) Hum Brain Mapp 39: 509-521
MeSH Terms: Analysis of Variance, Antiparkinson Agents, Brain Mapping, Cerebrovascular Circulation, Dopamine Agonists, Female, Humans, Linear Models, Magnetic Resonance Imaging, Male, Middle Aged, Neural Pathways, Neuropsychological Tests, Oxygen, Parkinson Disease, Reward, Ventral Striatum
Show Abstract · Added March 21, 2018
A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward-driven behaviors, which can result in life-altering morbidity. The mesocorticolimbic dopamine network guides reward-motivated behavior; however, its role in this treatment-related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward-learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD-fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex-matched PD patients with (n = 19) or without (n = 18) ICB. An incentive-based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole-brain voxelwise analyses and region-of-interest-based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala-to-midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum-to-subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment-avoidance learning. These data indicate that PD-ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward-based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509-521, 2018. © 2017 Wiley Periodicals, Inc.
© 2017 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
17 MeSH Terms
A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus.
Kamitakahara A, Bouyer K, Wang CH, Simerly R
(2018) J Comp Neurol 526: 133-145
MeSH Terms: Age Factors, Agouti-Related Protein, Analysis of Variance, Animals, Animals, Newborn, Arcuate Nucleus of Hypothalamus, Axons, ELAV-Like Protein 3, Estrogen Receptor alpha, Female, Green Fluorescent Proteins, Integrases, Leptin, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Neuropeptide Y, Receptors, Leptin, STAT3 Transcription Factor
Show Abstract · Added April 11, 2019
In the developing hypothalamus, the fat-derived hormone leptin stimulates the growth of axons from the arcuate nucleus of the hypothalamus (ARH) to other regions that control energy balance. These projections are significantly reduced in leptin deficient (Lep ) mice and this phenotype is largely rescued by neonatal leptin treatments. However, treatment of mature Lep mice is ineffective, suggesting that the trophic action of leptin is limited to a developmental critical period. To temporally delineate closure of this critical period for leptin-stimulated growth, we treated Lep mice with exogenous leptin during a variety of discrete time periods, and measured the density of Agouti-Related Peptide (AgRP) containing projections from the ARH to the ventral part of the dorsomedial nucleus of the hypothalamus (DMHv), and to the medial parvocellular part of the paraventricular nucleus (PVHmp). The results indicate that leptin loses its neurotrophic potential at or near postnatal day 28. The duration of leptin exposure appears to be important, with 9- or 11-day treatments found to be more effective than shorter (5-day) treatments. Furthermore, leptin treatment for 9 days or more was sufficient to restore AgRP innervation to both the PVHmp and DMHv in Lep females, but only to the DMHv in Lep males. Together, these findings reveal that the trophic actions of leptin are contingent upon timing and duration of leptin exposure, display both target and sex specificity, and that modulation of leptin-dependent circuit formation by each of these factors may carry enduring consequences for feeding behavior, metabolism, and obesity risk.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine.
Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV
(2017) Neuropharmacology 121: 20-29
MeSH Terms: Amphetamine, Analysis of Variance, Animals, Arrestins, Central Nervous System Stimulants, Locomotion, Mice, Mice, Inbred C57BL, Mice, Knockout, Time Factors, beta-Arrestin 1
Show Abstract · Added March 14, 2018
Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms