Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 84

Publication Record

Connections

Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: A multicenter study of 234 patients.
Wu C, Jermakowicz WJ, Chakravorti S, Cajigas I, Sharan AD, Jagid JR, Matias CM, Sperling MR, Buckley R, Ko A, Ojemann JG, Miller JW, Youngerman B, Sheth SA, McKhann GM, Laxton AW, Couture DE, Popli GS, Smith A, Mehta AD, Ho AL, Halpern CH, Englot DJ, Neimat JS, Konrad PE, Neal E, Vale FL, Holloway KL, Air EL, Schwalb J, Dawant BM, D'Haese PF
(2019) Epilepsia 60: 1171-1183
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Amygdala, Child, Cohort Studies, Epilepsy, Temporal Lobe, Epilepsy, Tonic-Clonic, Female, Humans, Laser Therapy, Magnetic Resonance Imaging, Male, Middle Aged, Retrospective Studies, Seizures, Treatment Outcome, Young Adult
Show Abstract · Added June 22, 2019
OBJECTIVE - Laser interstitial thermal therapy (LITT) for mesial temporal lobe epilepsy (mTLE) has reported seizure freedom rates between 36% and 78% with at least 1 year of follow-up. Unfortunately, the lack of robust methods capable of incorporating the inherent variability of patient anatomy, the variability of the ablated volumes, and clinical outcomes have limited three-dimensional quantitative analysis of surgical targeting and its impact on seizure outcomes. We therefore aimed to leverage a novel image-based methodology for normalizing surgical therapies across a large multicenter cohort to quantify the effects of surgical targeting on seizure outcomes in LITT for mTLE.
METHODS - This multicenter, retrospective cohort study included 234 patients from 11 centers who underwent LITT for mTLE. To investigate therapy location, all ablation cavities were manually traced on postoperative magnetic resonance imaging (MRI), which were subsequently nonlinearly normalized to a common atlas space. The association of clinical variables and ablation location to seizure outcome was calculated using multivariate regression and Bayesian models, respectively.
RESULTS - Ablations including more anterior, medial, and inferior temporal lobe structures, which involved greater amygdalar volume, were more likely to be associated with Engel class I outcomes. At both 1 and 2 years after LITT, 58.0% achieved Engel I outcomes. A history of bilateral tonic-clonic seizures decreased chances of Engel I outcome. Radiographic hippocampal sclerosis was not associated with seizure outcome.
SIGNIFICANCE - LITT is a viable treatment for mTLE in patients who have been properly evaluated at a comprehensive epilepsy center. Consideration of surgical factors is imperative to the complete assessment of LITT. Based on our model, ablations must prioritize the amygdala and also include the hippocampal head, parahippocampal gyrus, and rhinal cortices to maximize chances of seizure freedom. Extending the ablation posteriorly has diminishing returns. Further work is necessary to refine this analysis and define the minimal zone of ablation necessary for seizure control.
Wiley Periodicals, Inc. © 2019 International League Against Epilepsy.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Decreased Amygdala Reactivity to Parent Cues Protects Against Anxiety Following Early Adversity: An Examination Across 3 Years.
Callaghan BL, Gee DG, Gabard-Durnam L, Telzer EH, Humphreys KL, Goff B, Shapiro M, Flannery J, Lumian DS, Fareri DS, Caldera C, Tottenham N
(2019) Biol Psychiatry Cogn Neurosci Neuroimaging 4: 664-671
MeSH Terms: Adolescent, Adoption, Amygdala, Anxiety, Brain Mapping, Child, Child, Preschool, Cues, Female, Humans, Magnetic Resonance Imaging, Male, Parent-Child Relations, Psychiatric Status Rating Scales
Show Abstract · Added March 3, 2020
BACKGROUND - The human brain remains highly plastic for a protracted developmental period. Thus, although early caregiving adversities that alter amygdala development can result in enduring emotion regulation difficulties, these trajectories should respond to subsequent enriched caregiving. Exposure to high-quality parenting can regulate (i.e., decrease) children's amygdala reactivity, a process that, over the long term, is hypothesized to enhance emotion regulation. We tested the hypothesis that even following adversity, the parent-child relationship would be associated with decreases in amygdala reactivity to parent cues, which would in turn predict lower future anxiety.
METHODS - Participants were 102 children (6-10 years of age) and adolescents (11-17 years of age), for whom data were collected at one or two time points and who either had experienced institutional care before adoption (n = 45) or had lived always with their biological parents (comparison; n = 57). We examined how amygdala reactivity to visual cues of the parent at time 1 predicted longitudinal change (from time 1 to time 2) in parent-reported child anxiety across 3 years.
RESULTS - At time 1, on average, amygdala reactivity decrements to parent cues were not seen in children who had received institutional care but were seen in children in the comparison group. However, some children who previously experienced institutional care did show decreased amygdala reactivity to parent cues (∼40%), which was associated with greater child-reported feelings of security with their parent. Amygdala decreases at time 1 were followed by steeper anxiety reductions from time 1 to time 2 (i.e., 3 years).
CONCLUSIONS - These data provide a neurobiological mechanism by which the parent-child relationship can increase resilience, even in children at significant risk for anxiety symptoms.
Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Impact of substance use disorder on gray matter volume in schizophrenia.
Quinn M, McHugo M, Armstrong K, Woodward N, Blackford J, Heckers S
(2018) Psychiatry Res Neuroimaging 280: 9-14
MeSH Terms: Adolescent, Adult, Amygdala, Cerebral Cortex, Diagnosis, Dual (Psychiatry), Female, Frontal Lobe, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Occipital Lobe, Organ Size, Schizophrenia, Schizophrenic Psychology, Substance-Related Disorders, Young Adult
Show Abstract · Added March 26, 2019
Substance use may confound the study of brain structure in schizophrenia. We used voxel-based morphometry (VBM) to examine whether differences in regional gray matter volumes exist between schizophrenia patients with (n = 92) and without (n = 66) clinically significant cannabis and/or alcohol use histories compared to 88 healthy control subjects. Relative to controls, patients with schizophrenia had reduced gray matter volume in the bilateral precentral gyrus, right medial frontal cortex, right visual cortex, right occipital pole, right thalamus, bilateral amygdala, and bilateral cerebellum regardless of substance use history. Within these regions, we found no volume differences between patients with schizophrenia and a history of cannabis and/or alcohol compared to patients with schizophrenia without a clinically significant substance use history. Our data support the idea that a clinically meaningful history of alcohol or cannabis use does not significantly compound the gray matter deficits associated with schizophrenia.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
18 MeSH Terms
A person-centered approach to the assessment of early life stress: Associations with the volume of stress-sensitive brain regions in early adolescence.
King LS, Humphreys KL, Camacho MC, Gotlib IH
(2019) Dev Psychopathol 31: 643-655
MeSH Terms: Adolescent, Amygdala, Brain, Child, Female, Hippocampus, Humans, Magnetic Resonance Imaging, Male, Organ Size, Stress, Psychological, Temporal Lobe
Show Abstract · Added March 3, 2020
Researchers are becoming increasingly interested in linking specific forms of early life stress (ELS) to specific neurobiological markers, including alterations in the morphology of stress-sensitive brain regions. We used a person-centered, multi-informant approach to investigate the associations of specific constellations of ELS with hippocampal and amygdala volume in a community sample of 211 9- to 13-year-old early adolescents. Further, we compared this approach to a cumulative risk model of ELS, in which ELS was quantified by the total number of stressors reported. Using latent class analysis, we identified three classes of ELS (labeled typical/low, family instability, and direct victimization) that were distinguished by experiences of family instability and victimization. Adolescents in the direct victimization class had significantly smaller hippocampal volume than did adolescents in the typical/low class; ELS classes were not significantly associated with amygdala volume. The cumulative risk model of ELS had a poorer fit than did the person-centered model; moreover, cumulative ELS was not significantly associated with hippocampal or amygdala volume. Our results underscore the utility of taking a person-centered approach to identify alterations in stress-sensitive brain regions based on constellations of ELS, and suggest victimization is specifically associated with hippocampal hypotrophy observed in early adolescence.
0 Communities
1 Members
0 Resources
MeSH Terms
Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.
Bluett RJ, Báldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, Baechle J, Marcus DJ, Mardam-Bey R, Shonesy BC, Uddin MJ, Marnett LJ, Mackie K, Colbran RJ, Winder DG, Patel S
(2017) Nat Commun 8: 14782
MeSH Terms: Amygdala, Animals, Anxiety, Arachidonic Acids, Behavior, Animal, Benzodioxoles, Disease Susceptibility, Dronabinol, Endocannabinoids, Excitatory Postsynaptic Potentials, Female, Glutamates, Glycerides, Hippocampus, Lipoprotein Lipase, Male, Mice, Inbred ICR, Mice, Knockout, Phenotype, Piperidines, Resilience, Psychological, Signal Transduction, Stress, Psychological, Synapses
Show Abstract · Added April 7, 2017
Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.
0 Communities
4 Members
0 Resources
24 MeSH Terms
Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity.
Albert K, Gau V, Taylor WD, Newhouse PA
(2017) J Affect Disord 210: 49-56
MeSH Terms: Aged, Amygdala, Attention, Depressive Disorder, Major, Emotions, Female, Hippocampus, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Middle Aged, Neural Pathways, Photic Stimulation, Psychomotor Performance
Show Abstract · Added April 6, 2017
BACKGROUND - Cognitive bias is a common characteristic of major depressive disorder (MDD) and is posited to remain during remission and contribute to recurrence risk. Attention bias may be related to enhanced amygdala activity or altered amygdala functional connectivity in depression. The current study examined attention bias, brain activity for emotional images, and functional connectivity in post-menopausal women with and without a history of major depression.
METHODS - Attention bias for emotionally valenced images was examined in 33 postmenopausal women with (n=12) and without (n=21) a history of major depression using an emotion dot probe task during fMRI. Group differences in amygdala activity and functional connectivity were assessed using fMRI and examined for correlations to attention performance.
RESULTS - Women with a history of MDD showed greater attentional bias for negative images and greater activity in brain areas including the amygdala for both positive and negative images (pcorr <0.001) than women without a history of MDD. In all participants, amygdala activity for negative images was correlated with attention facilitation for emotional images. Women with a history of MDD had significantly greater functional connectivity between the amygdala and hippocampal complex. In all participants amygdala-hippocampal connectivity was positively correlated with attention facilitation for negative images.
LIMITATIONS - Small sample with unbalanced groups.
CONCLUSIONS - These findings provide evidence for negative attentional bias in euthymic, remitted depressed individuals. Activity and functional connectivity in limbic and attention networks may provide a neurobiological basis for continued cognitive bias in remitted depression.
Copyright © 2016 Elsevier B.V. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Convergent individual differences in visual cortices, but not the amygdala across standard amygdalar fMRI probe tasks.
Villalta-Gil V, Hinton KE, Landman BA, Yvernault BC, Perkins SF, Katsantonis AS, Sellani CL, Lahey BB, Zald DH
(2017) Neuroimage 146: 312-319
MeSH Terms: Adult, Affect, Amygdala, Brain Mapping, Facial Expression, Facial Recognition, Female, Humans, Individuality, Magnetic Resonance Imaging, Male, Photic Stimulation, Visual Cortex, Young Adult
Show Abstract · Added April 6, 2017
The amygdala (AMG) has been repeatedly implicated in the processing of threatening and negatively valenced stimuli and multiple fMRI paradigms have reported personality, genetic, and psychopathological associations with individual differences in AMG activation in these paradigms. Yet the interchangeability of activations in these probes has not been established, thus it remains unclear if we can interpret AMG responses on specific tasks as general markers of its reactivity. In this study we aimed to assess if different tasks that have been widely used within the Affective Neuroscience literature consistently recruit the AMG.
METHOD - Thirty-two young healthy subjects completed four fMRI tasks that have all been previously shown to probe the AMG during processing of threatening stimuli: the Threat Face Matching (TFM), the Cued Aversive Picture (CAP), the Aversive and Erotica Pictures (AEP) and the Screaming Lady paradigm (SLp) tasks. Contrasts testing response to aversive stimuli relative to baseline or neutral stimuli were generated and correlations between activations in the AMG were calculated across tasks were performed for ROIs of the AMG.
RESULTS - The TFM, CAP and AEP, but not the SLp, successfully recruit the AMG, among other brain regions, especially when contrasts were against baseline or nonsocial stimuli. Conjunction analysis across contrasts showed that visual cortices (VisCtx) were also consistently recruited. Correlation analysis between the extracted data for right and left AMG did not yield significant associations across tasks. By contrast, the extracted signal in VisCtx showed significant associations across tasks (range r=0.511-r=0.630).
CONCLUSIONS - Three of the four paradigms revealed significant AMG reactivity, but individual differences in the magnitudes of AMG reactivity were not correlated across paradigms. By contrast, VisCtx activation appears to be a better candidate than the AMG as a measure of individual differences with convergent validity across negative emotion processing paradigms.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling.
Doenni VM, Gray JM, Song CM, Patel S, Hill MN, Pittman QJ
(2016) Brain Behav Immun 58: 237-247
MeSH Terms: Amidohydrolases, Amygdala, Animals, Arachidonic Acids, Behavior, Animal, Endocannabinoids, Female, Glycerides, Inflammation, Lipopolysaccharides, Male, Polyunsaturated Alkamides, Pyridazines, Rats, Sprague-Dawley, Receptor, Cannabinoid, CB1, Signal Transduction, Social Behavior, Urea
Show Abstract · Added March 14, 2018
Early-life inflammation has been shown to exert profound effects on brain development and behavior, including altered emotional behavior, stress responsivity and neurochemical/neuropeptide receptor expression and function. The current study extends this research by examining the impact of inflammation, triggered with the bacterial compound lipopolysaccharide (LPS) on postnatal day (P) 14, on social behavior during adolescence. We investigated the role that the endocannabinoid (eCB) system plays in sociability after early-life LPS. To test this, multiple cohorts of Sprague Dawley rats were injected with LPS on P14. In adolescence, rats were subjected to behavioral testing in a reciprocal social interaction paradigm as well as the open field. We quantified eCB levels in the amygdala of P14 and adolescent animals (anandamide and 2-arachidonoylglycerol) as well as adolescent amygdaloid cannabinoid receptor 1 (CB1) binding site density and the hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which metabolizes the eCB anandamide. Additionally, we examined the impact of FAAH inhibition on alterations in social behavior. Our results indicate that P14 LPS decreases adolescent social behavior (play and social non-play) in males and females at P40. This behavioral alteration is accompanied by decreased CB1 binding, increased anandamide levels and increased FAAH activity. Oral administration of the FAAH inhibitor PF-04457845 (1mg/kg) prior to the social interaction task normalizes LPS-induced alterations in social behavior, while not affecting social behavior in the control group. Infusion of 10ng PF-04457845 into the basolateral amygdala normalized social behavior in LPS injected females. These data suggest that alterations in eCB signaling following postnatal inflammation contribute to impairments in social behavior during adolescence and that inhibition of FAAH could be a novel target for disorders involving social deficits such as social anxiety disorders or autism.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development.
Silvers JA, Lumian DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, Caldera C, Flannery J, Telzer EH, Humphreys KL, Tottenham N
(2016) J Neurosci 36: 6420-30
MeSH Terms: Adolescent, Amygdala, Anxiety, Avoidance Learning, Brain Mapping, Child, Female, Galvanic Skin Response, Hippocampus, Humans, Image Processing, Computer-Assisted, Longitudinal Studies, Magnetic Resonance Imaging, Male, Neural Pathways, Neurodevelopmental Disorders, Oxygen, Prefrontal Cortex, Psychiatric Status Rating Scales, Reaction Time
Show Abstract · Added March 3, 2020
UNLABELLED - Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience.
SIGNIFICANCE STATEMENT - Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive learning. Among youth who experienced prior institutionalization, individual differences in aversive learning were associated with worse current anxiety. However, connectivity between the hippocampus and prefrontal cortex prospectively predicted significant improvements in anxiety 2 years following scanning for previously institutionalized youth. Among youth who experienced prior institutionalization, age-atypical engagement of a distributed set of brain regions during aversive learning may serve a protective function.
Copyright © 2016 the authors 0270-6474/16/366421-11$15.00/0.
0 Communities
1 Members
0 Resources
MeSH Terms
Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation.
Green SA, Goff B, Gee DG, Gabard-Durnam L, Flannery J, Telzer EH, Humphreys KL, Louie J, Tottenham N
(2016) J Child Psychol Psychiatry 57: 1135-44
MeSH Terms: Amygdala, Anxiety, Separation, Child, Child, Institutionalized, Facial Recognition, Female, Follow-Up Studies, Humans, Magnetic Resonance Imaging, Male, Psychosocial Deprivation, Social Perception
Show Abstract · Added March 3, 2020
BACKGROUND - Significant disruption in caregiving is associated with increased internalizing symptoms, most notably heightened separation anxiety symptoms during childhood. It is also associated with altered functional development of the amygdala, a neurobiological correlate of anxious behavior. However, much less is known about how functional alterations of amygdala predict individual differences in anxiety. Here, we probed amygdala function following institutional caregiving using very subtle social-affective stimuli (trustworthy and untrustworthy faces), which typically result in large differences in amygdala signal, and change in separation anxiety behaviors over a 2-year period. We hypothesized that the degree of differentiation of amygdala signal to trustworthy versus untrustworthy face stimuli would predict separation anxiety symptoms.
METHODS - Seventy-four youths mean (SD) age = 9.7 years (2.64) with and without previous institutional care, who were all living in families at the time of testing, participated in an fMRI task designed to examine differential amygdala response to trustworthy versus untrustworthy faces. Parents reported on their children's separation anxiety symptoms at the time of scan and again 2 years later.
RESULTS - Previous institutional care was associated with diminished amygdala signal differences and behavioral differences to the contrast of untrustworthy and trustworthy faces. Diminished differentiation of these stimuli types predicted more severe separation anxiety symptoms 2 years later. Older age at adoption was associated with diminished differentiation of amygdala responses.
CONCLUSIONS - A history of institutional care is associated with reduced differential amygdala responses to social-affective cues of trustworthiness that are typically exhibited by comparison samples. Individual differences in the degree of amygdala differential responding to these cues predict the severity of separation anxiety symptoms over a 2-year period. These findings provide a biological mechanism to explain the associations between early caregiving adversity and individual differences in internalizing symptomology during development, thereby contributing to individualized predictions of future clinical outcomes.
© 2016 Association for Child and Adolescent Mental Health.
0 Communities
1 Members
0 Resources
MeSH Terms