Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 46

Publication Record


GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions.
Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, Taylor SR, Duman CH, Delpire E, Picciotto M, Wohleb ES, Duman RS
(2020) J Clin Invest 130: 1336-1349
MeSH Terms: Animals, Antidepressive Agents, Female, GABAergic Neurons, Gene Knockout Techniques, Glutamate Decarboxylase, Interneurons, Ketamine, Male, Mice, Mice, Transgenic, Parvalbumins, Receptors, N-Methyl-D-Aspartate, Sex Characteristics, Somatostatin
Show Abstract · Added March 18, 2020
A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.
0 Communities
1 Members
0 Resources
15 MeSH Terms
iPSC-Derived Brain Endothelium Exhibits Stable, Long-Term Barrier Function in Perfused Hydrogel Scaffolds.
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM
(2019) Stem Cell Reports 12: 474-487
MeSH Terms: Albumins, Blood-Brain Barrier, Brain, Cells, Cultured, Dextrans, Endothelial Cells, Endothelium, Fluorescein, Humans, Hydrogels, Induced Pluripotent Stem Cells, Microvessels
Show Abstract · Added March 18, 2020
There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.
Grove KJ, Lareau NM, Voziyan PA, Zeng F, Harris RC, Hudson BG, Caprioli RM
(2018) Kidney Int 94: 292-302
MeSH Terms: Albumins, Albuminuria, Animals, Cathepsin D, Diabetic Nephropathies, Disease Models, Animal, Frozen Sections, Humans, Kidney Glomerulus, Kidney Tubules, Mice, Mice, Inbred C57BL, Molecular Imaging, Nitric Oxide Synthase Type III, Proteolysis, Renal Elimination, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added May 29, 2018
Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOSdb/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy.
Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Early Detection of Treatment-Induced Mitotic Arrest Using Temporal Diffusion Magnetic Resonance Spectroscopy.
Jiang X, Li H, Zhao P, Xie J, Khabele D, Xu J, Gore JC
(2016) Neoplasia 18: 387-97
MeSH Terms: Albumins, Animals, Antineoplastic Agents, Phytogenic, Apoptosis, Biomarkers, Tumor, Cell Line, Tumor, Cell Size, Female, Flow Cytometry, Humans, Magnetic Resonance Spectroscopy, Mice, Mice, Nude, Mitosis, Mitotic Index, Paclitaxel, Xenograft Model Antitumor Assays
Show Abstract · Added November 1, 2016
PURPOSE - A novel quantitative magnetic resonance imaging (MRI) method, namely, temporal diffusion spectroscopy (TDS), was used to detect the response of tumor cells (notably, mitotic arrest) to a specific antimitotic treatment (Nab-paclitaxel) in culture and human ovarian xenografts and evaluated as an early imaging biomarker of tumor responsiveness.
METHODS - TDS measures a series of apparent diffusion coefficients (ADCs) of tissue water over a range of effective diffusion times, which may correspond to diffusion distances ranging from subcellular to cellular levels (~3-20 μm). By fitting the measured ADC data to a tissue model, parameters reflecting structural properties such as restriction size in solid tumors can be extracted. Two types of human ovarian cell lines (OVCAR-8 as a responder to Nab-paclitaxel and NCI/ADR-RES as a resistant type) were treated with either vehicle (PBS) or Nab-paclitaxel, and treatment responses of both in vitro and in vivo cases were investigated using TDS.
RESULTS - Acute cell size increases induced by Nab-paclitaxel in responding tumors were confirmed by flow cytometry and light microscopy in cell culture. Nab-paclitaxel-induced mitotic arrest in treated tumors/cells was quantified histologically by measuring the mitotic index in vivo using a mitosis-specific marker (anti-phosphohistone H3). Changes in the fitted restriction size, one of the parameters obtained from TDS, were able to detect and quantify increases in tumor cell sizes. All the MR results had a high degree of consistency with other flow, microscopy, and histological data. Moreover, with an appropriate analysis, the Nab-paclitaxel-responsive tumors in vivo could be easily distinguished from all the other vehicle-treated and Nab-paclitaxel-resistant tumors.
CONCLUSION - TDS detects increases in cell sizes associated with antimitotic-therapy-induced mitotic arrest in solid tumors in vivo which occur before changes in tissue cellularity or conventional diffusion MRI metrics. By quantifying changes in cell size, TDS has the potential to improve the specificity of MRI methods in the evaluation of therapeutic response and enable a mechanistic understanding of therapy-induced changes in tumors.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
17 MeSH Terms
A phase 1b study of erlotinib in combination with gemcitabine and nab-paclitaxel in patients with previously untreated advanced pancreatic cancer: an Academic Oncology GI Cancer Consortium study.
Cohen SJ, O'Neil BH, Berlin J, Ames P, McKinley M, Horan J, Catalano PM, Davies A, Weekes CD, Leichman L
(2016) Cancer Chemother Pharmacol 77: 693-701
MeSH Terms: Aged, Albumins, Antineoplastic Combined Chemotherapy Protocols, Deoxycytidine, Erlotinib Hydrochloride, Female, Humans, Male, Middle Aged, Paclitaxel, Pancreatic Neoplasms
Show Abstract · Added May 7, 2016
PURPOSE - Addition of either nab-paclitaxel or erlotinib to gemcitabine to treat advanced pancreatic cancer has demonstrated overall survival benefit. This study was conducted to evaluate the tolerability and safety of combining all three drugs and assess preliminary evidence of efficacy.
METHODS - In this open-label, phase 1b study, patients with previously untreated, advanced pancreatic cancer were treated in 28-day cycles with intravenous gemcitabine/nab-paclitaxel on days 1, 8, and 15, and once daily oral erlotinib. A standard "3 + 3" design was used. Dose level 1 (DL1) for gemcitabine (mg/m(2))/nab-paclitaxel (mg/m(2))/erlotinib (mg) was 1000/125/100, respectively, with de-escalation to DL-1 (1000/100/100), DL-2b (1000/75/100), and DL-3 (1000/75/75). The maximum tolerated dose (MTD) was defined by occurrence of dose-limiting toxicity (DLT) in ≤1 of six patients within the first cycle. Efficacy was assessed with CT scans performed at two-cycle intervals.
RESULTS - Nineteen patients were enrolled. DLTs occurred in two patients at DL1, three patients at DL-1, two patients at DL-2b, and one patient at DL-3. The MTD for the combination of gemcitabine/nab-paclitaxel/erlotinib was DL-3 (1000/75/75). In analyses of efficacy among 14 evaluable patients, partial responses were observed in four of six patients at DL1, one of two patients at DL-2b, and two of six patients at DL-3.
CONCLUSION - The addition of erlotinib to gemcitabine and nab-paclitaxel is not tolerable at standard single-agent dosing of all drugs. However, significant clinical activity was noted, even at DL-3. Further study of the combination will need to incorporate reduced dosing.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus.
Klar R, Walker AG, Ghose D, Grueter BA, Engers DW, Hopkins CR, Lindsley CW, Xiang Z, Conn PJ, Niswender CM
(2015) J Neurosci 35: 7600-15
MeSH Terms: Animals, CA1 Region, Hippocampal, CA3 Region, Hippocampal, Channelrhodopsins, Electric Stimulation, Excitatory Amino Acid Agonists, Excitatory Amino Acid Antagonists, Hippocampus, In Vitro Techniques, Inhibitory Postsynaptic Potentials, Interneurons, Long-Term Potentiation, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Models, Biological, Parvalbumins, Patch-Clamp Techniques, Receptors, Metabotropic Glutamate
Show Abstract · Added February 18, 2016
Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders.
Copyright © 2015 the authors 0270-6474/15/357600-16$15.00/0.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Contrast-Enhanced Subharmonic and Harmonic Ultrasound of Renal Masses Undergoing Percutaneous Cryoablation.
Eisenbrey JR, Shaw CM, Lyshchik A, Machado P, Lallas CD, Trabulsi EJ, Merton DA, Fox TB, Liu JB, Brown DB, Forsberg F
(2015) Acad Radiol 22: 820-6
MeSH Terms: Aged, Aged, 80 and over, Albumins, Carcinoma, Renal Cell, Contrast Media, Cryosurgery, Female, Fluorocarbons, Hepatectomy, Humans, Image Enhancement, Kidney Neoplasms, Male, Middle Aged, Prognosis, Reproducibility of Results, Sensitivity and Specificity, Surgery, Computer-Assisted, Treatment Outcome, Ultrasonography
Show Abstract · Added September 18, 2015
RATIONALE AND OBJECTIVES - The objective of this study was to evaluate and compare contrast-enhanced subharmonic and harmonic ultrasound as tools for characterizing solid renal masses and monitoring their response to cryoablation therapy.
MATERIALS AND METHODS - Sixteen patients undergoing percutaneous ablation of a renal mass provided informed consent to undergo ultrasound examinations the morning before and approximately 4 months after cryoablation. Ultrasound contrast parameters during pretreatment imaging were compared to biopsy results obtained during ablation (n = 13). Posttreatment changes were evaluated by a radiologist and compared to contrast-enhanced magnetic resonance imaging (MRI)/computed tomography (CT) follow-up.
RESULTS - All masses initially showed heterogeneous enhancement with both subharmonic and harmonic ultrasound. Early contrast washout in the mass relative to the cortex was observed in 6 of 9 malignant and 0 of 4 benign lesions in subharmonic mode and 8 of 9 malignant and 1 of 4 benign lesions in harmonic imaging. In cases where the lesion was adequately visualized at follow-up (n = 12), subharmonic and harmonic ultrasound showed accuracies of 83% and 75%, respectively, in predicting treatment outcome. Although harmonic imaging showed less overall error, no significant differences (P > .29) in ablation cavity volumes were observed between MRI/CT and either contrast-imaging mode.
CONCLUSIONS - Subharmonic and harmonic contrast-enhanced ultrasound may be a safe and accurate imaging alternative for characterizing renal masses and evaluating their response to cryoablation therapy. Although subharmonic imaging was more accurate in detecting effective cryoablation, harmonic imaging was superior in quantifying ablation cavity volumes.
Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes.
Brown JA, Ramikie TS, Schmidt MJ, Báldi R, Garbett K, Everheart MG, Warren LE, Gellért L, Horváth S, Patel S, Mirnics K
(2015) Mol Psychiatry 20: 1499-507
MeSH Terms: Animals, Behavior, Animal, Brain, Disease Models, Animal, Electrophysiology, Exploratory Behavior, Fear, Gene Silencing, Glutamate Decarboxylase, Interneurons, Ketamine, Male, Mice, Mice, Inbred C3H, Mice, Transgenic, Parvalbumins, Receptors, N-Methyl-D-Aspartate, Schizophrenia, Sensory Gating, Synaptic Transmission
Show Abstract · Added February 12, 2015
Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.
Graham DL, Durai HH, Garden JD, Cohen EL, Echevarria FD, Stanwood GD
(2015) ACS Chem Neurosci 6: 297-305
MeSH Terms: Animals, Cell Count, Depression, Emotions, Female, GABAergic Neurons, Glutamate Decarboxylase, Green Fluorescent Proteins, Gyrus Cinguli, Immunohistochemistry, In Situ Hybridization, Fluorescence, Interneurons, Male, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Neuropsychological Tests, Parvalbumins, Receptors, Dopamine D2
Show Abstract · Added January 20, 2015
Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Deletion of KCC3 in parvalbumin neurons leads to locomotor deficit in a conditional mouse model of peripheral neuropathy associated with agenesis of the corpus callosum.
Ding J, Delpire E
(2014) Behav Brain Res 274: 128-36
MeSH Terms: Agenesis of Corpus Callosum, Analysis of Variance, Animals, Disease Models, Animal, Exploratory Behavior, Ganglia, Spinal, Mice, Mice, Transgenic, Motor Activity, Movement Disorders, Neurons, Parvalbumins, Peripheral Nervous System Diseases, Phosphopyruvate Hydratase, Psychomotor Performance, Reaction Time, Spinal Cord, Symporters
Show Abstract · Added November 25, 2014
Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC or ACCPN) is an autosomal recessive disease caused by the disruption of the SLC12A6 gene, which encodes the K-Cl cotransporter-3 (KCC3). A ubiquitous deletion of KCC3 in mice leads to severe locomotor deficits similar to ACCPN patients. However, the underlying pathological mechanism leading to the disease remains unclear. Even though a recent study suggests that the neuropathic features of ACCPN are mostly due to neuronal loss of KCC3, the specific cell type responsible for the disease is still unknown. Here we established four tissue specific KCC3 knockout mouse lines to explore the cell population origin of ACCPN. Our results showed that the loss of KCC3 in parvalbumin-positive neurons led to significant locomotor deficit, suggesting a crucial role of these neurons in the development of the locomotor deficit. Interestingly, mice in which KCC3 deletion was driven by the neuron-specific enolase (NSE) did not develop any phenotype. Furthermore, we demonstrated that nociceptive neurons targeted with Nav1.8-driven CRE and Schwann cells targeted with a desert hedgehog-driven CRE were not involved in the development of ACCPN. Together, these results establish that the parvalbumin-positive neuronal population is an important player in the pathogenic development of ACCPN.
Copyright © 2014 Elsevier B.V. All rights reserved.
1 Communities
0 Members
0 Resources
18 MeSH Terms