Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 6 of 6

Publication Record


The nature and biology of basement membranes.
Pozzi A, Yurchenco PD, Iozzo RV
(2017) Matrix Biol 57-58: 1-11
MeSH Terms: Agrin, Animals, Basement Membrane, Bone Diseases, Developmental, Collagen Type IV, Diabetic Nephropathies, Extracellular Matrix, Gene Expression Regulation, Heparan Sulfate Proteoglycans, Humans, Laminin, Lupus Nephritis, Mechanotransduction, Cellular, Membrane Glycoproteins, Mutation, Protein Isoforms
Show Abstract · Added March 26, 2017
Basement membranes are delicate, nanoscale and pliable sheets of extracellular matrices that often act as linings or partitions in organisms. Previously considered as passive scaffolds segregating polarized cells, such as epithelial or endothelial cells, from the underlying mesenchyme, basement membranes have now reached the center stage of biology. They play a multitude of roles from blood filtration to muscle homeostasis, from storing growth factors and cytokines to controlling angiogenesis and tumor growth, from maintaining skin integrity and neuromuscular structure to affecting adipogenesis and fibrosis. Here, we will address developmental, structural and biochemical aspects of basement membranes and discuss some of the pathogenetic mechanisms causing diseases linked to abnormal basement membranes.
Copyright © 2017 Elsevier B.V. All rights reserved.
0 Communities
0 Members
1 Resources
16 MeSH Terms
Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation.
Borza DB
(2017) Matrix Biol 57-58: 299-310
MeSH Terms: Agrin, Animals, Collagen Type IV, Complement Activation, Complement C3b, Complement Factor H, Gene Expression Regulation, Glomerular Basement Membrane, Glomerulonephritis, Membranous, Heparitin Sulfate, Humans, Laminin, Lupus Nephritis, Membrane Glycoproteins, Signal Transduction, Static Electricity
Show Abstract · Added December 2, 2016
The glomerular basement membrane (GBM) is an essential component of the glomerular filtration barrier. Heparan sulfate proteoglycans such as agrin are major components of the GBM, along with α345(IV) collagen, laminin-521 and nidogen. A loss of GBM heparan sulfate chains is associated with proteinuria in several glomerular diseases and may contribute to the underlying pathology. As the major determinants of the anionic charge of the GBM, heparan sulfate chains have been thought to impart charge selectivity to the glomerular filtration, a view challenged by the negligible albuminuria in mice that lack heparan sulfate in the GBM. Recent studies provide increasing evidence that heparan sulfate chains modulate local complement activation by recruiting complement regulatory protein factor H, the major inhibitor of the alternative pathway in plasma. Factor H selectively inactivates C3b bound to surfaces bearing host-specific polyanions such as heparan sulfate, thus limiting complement activation on self surfaces such as the GBM, which are not protected by cell-bound complement regulators. We discuss mechanisms whereby the acquired loss of GBM heparan sulfate can impair the local regulation of the alternative pathway, exacerbating complement activation and glomerular injury in immune-mediated kidney diseases such as membranous nephropathy and lupus nephritis.
Copyright © 2016 Elsevier B.V. All rights reserved.
1 Communities
1 Members
0 Resources
16 MeSH Terms
Involvement of p120 catenin in myopodial assembly and nerve-muscle synapse formation.
Madhavan R, Zhao XT, Reynolds AB, Peng HB
(2006) J Neurobiol 66: 1511-27
MeSH Terms: Agrin, Animals, Blotting, Western, Catenins, Cell Adhesion Molecules, Cells, Cultured, Coculture Techniques, Embryo, Nonmammalian, Gene Expression, Gene Expression Regulation, Green Fluorescent Proteins, Humans, Muscle Cells, Neuromuscular Junction, Neurons, Phosphoproteins, Pseudopodia, Receptors, Cholinergic, Time Factors, Tyrosine, Xenopus
Show Abstract · Added March 5, 2014
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve-secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin-association of p120ctn in cell extracts. Whereas ectopic expression of wild-type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant-negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve- and agrin-induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin-induced myopodial assembly and suggest that myopodia increase muscle-nerve contacts and muscle's access to neural agrin to promote NMJ formation.
Copyright 2006 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice.
VanSaun M, Herrera AA, Werle MJ
(2003) J Neurocytol 32: 1129-42
MeSH Terms: Agrin, Animals, Cell Differentiation, Excitatory Postsynaptic Potentials, Fluorescent Antibody Technique, Matrix Metalloproteinase 3, Mice, Mice, Knockout, Microscopy, Electron, Neuromuscular Junction, Reaction Time, Receptors, Cholinergic, Synaptic Membranes, Synaptic Transmission, Up-Regulation
Show Abstract · Added May 13, 2014
Matrix metalloproteinases are important regulators of extracellular matrix molecules and cell-cell signaling. Antibodies to matrix metalloproteinase 3 (MMP3) recognize molecules at the frog neuromuscular junction, and MMP3 can remove agrin from synaptic basal lamina (VanSaun & Werle, 2000). To gain insight into the possible roles of MMP3 at the neuromuscular junction, detailed observations were made on the structure and function of the neuromuscular junctions in MMP3 null mutant mice. Striking differences were found in the appearance of the postsynaptic apparatus of MMP3 null mutant mice. Endplates had an increased volume of AChR stained regions within the endplate structure, leaving only small regions devoid of AChRs. Individual postsynaptic gutters were wider, containing prominent lines that represent the AChRs concentrated at the tops of the junctional folds. Electron microscopy revealed a dramatic increase in the number and size of the junctional folds, in addition to ectopically located junctional folds. Electrophysiological recordings revealed no change in quantal content or MEPP frequency, but there was an increase in MEPP rise time in a subset of endplates. No differences were observed in the rate or extent of developmental synapse elimination. In vitro cleavage experiments revealed that MMP3 directly cleaves agrin. Increased agrin immunofluorescence was observed at the neuromuscular junctions of MMP3 null mutant mice. These results provide strong evidence that MMP3 is involved in the control of synaptic structure at the neuromuscular junction and they support the hypothesis that MMP3 is involved in the regulation of agrin at the neuromuscular junction.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3.
Werle MJ, VanSaun M
(2003) J Neurocytol 32: 905-13
MeSH Terms: Action Potentials, Agrin, Animals, Basement Membrane, Humans, Matrix Metalloproteinase 3, Synapses
Show Abstract · Added May 13, 2014
Agrin is a heparan sulfate proteoglycan, which plays an essential role in the development and maintenance of the neuromuscular junction. Agrin is a stable component of the synaptic basal lamina and strong evidence supports the hypothesis that agrin directs the formation of the postsynaptic apparatus, including aggregates of AChRs, and junctional folds. Changes in the distribution of agrin during synaptic remodeling, denervation and reinnervation reveal that agrin can be quickly and efficiently removed from the synaptic basal lamina in a regulated manner. In order to fully understand this mechanism we sought to identify those molecules that were responsible for the removal of agrin. Matrix Metalloproteinases (MMPs) were the most likely molecules since MMPs are involved in the regulation of the pericellular space, including the cleavage of matrix proteins. In particular, MMP3 has been shown to be effective in cleaving heparan sulfate proteoglycans. Antibodies to MMP3 recognize molecules concentrated in the extracellular matrix of perisynaptic Schwann cells. MMP3 specific phylogenic compounds reveal that active MMP3 is localized to the neuromuscular junction. Purified recombinant MMP3 can directly cleave agrin, and it can also remove agrin from synaptic basal lamina. MMP3 activity is itself regulated as activation of MMP3 is lost in denervated muscles. MMP3 null mutant mice have altered neuromuscular junction structure and function, with increased AChRs, junctional folds and agrin immunoreactivity. Altogether these results support the hypothesis that synaptic activity induces the activation of MMP3, and the activated MMP3 removes agrin from the synaptic basal lamina.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Matrix metalloproteinase-3 removes agrin from synaptic basal lamina.
VanSaun M, Werle MJ
(2000) J Neurobiol 43: 140-9
MeSH Terms: Agrin, Animals, Antibodies, Antibody Specificity, Basement Membrane, Bungarotoxins, Dose-Response Relationship, Drug, Immunohistochemistry, Laminin, Male, Matrix Metalloproteinase 3, Microscopy, Electron, Muscle, Skeletal, Neuromuscular Junction, Rana pipiens, Rhodamines, Synaptic Membranes
Show Abstract · Added May 13, 2014
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N-terminal region of agrin binds tightly to basal lamina, while the C-terminal region interacts with a muscle-specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase-3 (MMP-3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP-3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP-3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP-3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP-3 treatment does not alter anti-laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP-3 at the neuromuscular junction and that MMP-3 specifically removes agrin from synaptic basal lamina.
Copyright 2000 John Wiley & Sons, Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms