Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 68

Publication Record

Connections

MFe adipose tissue macrophages compensate for tissue iron perturbations in mice.
Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH
(2018) Am J Physiol Cell Physiol 315: C319-C329
MeSH Terms: Adipocytes, Adipose Tissue, Animals, Cell Line, Dietary Supplements, Inflammation, Iron Overload, Iron, Dietary, Macrophages, Male, Mice, Mice, Inbred C57BL, Monocytes
Show Abstract · Added March 26, 2019
Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess free fatty acids and regulation of the extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron-handling genes. Although studies have demonstrated that iron homeostasis is important for adipocyte health, little is known about how MFe ATMs may respond to and influence adipose tissue iron availability. Two methodologies were used to address this question: dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe ATMs accumulated excess iron, whereas the iron content of MFe ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe ATMs incorporated high levels of iron, and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe ATM incorporation into the MFe pool. The MFe ATM population maintained its low inflammatory profile and iron-cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective.
Shi F, Collins S
(2017) Horm Mol Biol Clin Investig 31:
MeSH Terms: Adipocytes, Beige, Adipocytes, Brown, Animals, Cyclic AMP-Dependent Protein Kinases, Cyclic GMP-Dependent Protein Kinases, Energy Metabolism, Gene Expression Regulation, Humans, Intracellular Space, Mechanistic Target of Rapamycin Complex 1, MicroRNAs, Natriuretic Agents, RNA, Long Noncoding, Receptors, Adrenergic, beta, Second Messenger Systems, Signal Transduction, Thermogenesis, Uncoupling Protein 1
Show Abstract · Added September 26, 2018
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
0 Communities
1 Members
0 Resources
MeSH Terms
HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning.
Ferrari A, Longo R, Fiorino E, Silva R, Mitro N, Cermenati G, Gilardi F, Desvergne B, Andolfo A, Magagnotti C, Caruso D, Fabiani E, Hiebert SW, Crestani M
(2017) Nat Commun 8: 93
MeSH Terms: Adipocytes, Adipose Tissue, Brown, Adipose Tissue, White, Animals, Cell Line, Diet, High-Fat, Gene Expression Regulation, Gene Silencing, Histone Deacetylases, Lipid Metabolism, Male, Mice, Mice, Knockout
Show Abstract · Added February 7, 2019
White adipose tissue (WAT) can undergo a phenotypic switch, known as browning, in response to environmental stimuli such as cold. Post-translational modifications of histones have been shown to regulate cellular energy metabolism, but their role in white adipose tissue physiology remains incompletely understood. Here we show that histone deacetylase 3 (HDAC3) regulates WAT metabolism and function. Selective ablation of Hdac3 in fat switches the metabolic signature of WAT by activating a futile cycle of de novo fatty acid synthesis and β-oxidation that potentiates WAT oxidative capacity and ultimately supports browning. Specific ablation of Hdac3 in adipose tissue increases acetylation of enhancers in Pparg and Ucp1 genes, and of putative regulatory regions of the Ppara gene. Our results unveil HDAC3 as a regulator of WAT physiology, which acts as a molecular brake that inhibits fatty acid metabolism and WAT browning.Histone deacetylases, such as HDAC3, have been shown to alter cellular metabolism in various tissues. Here the authors show that HDAC3 regulates WAT metabolism by activating a futile cycle of fatty acid synthesis and oxidation, which supports WAT browning.
1 Communities
0 Members
0 Resources
MeSH Terms
Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in .
Matsuoka S, Armstrong AR, Sampson LL, Laws KM, Drummond-Barbosa D
(2017) Genetics 206: 953-971
MeSH Terms: Adipocytes, Animals, Cell Lineage, Diet, Drosophila melanogaster, Fatty Acids, Female, Gene Expression Regulation, Developmental, Germ Cells, Hexokinase, Metabolic Networks and Pathways, Oogonial Stem Cells, Phosphatidylethanolamines, Proteomics, Vitellogenesis
Show Abstract · Added May 2, 2017
Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems.
Copyright © 2017 by the Genetics Society of America.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation.
Chu AY, Deng X, Fisher VA, Drong A, Zhang Y, Feitosa MF, Liu CT, Weeks O, Choh AC, Duan Q, Dyer TD, Eicher JD, Guo X, Heard-Costa NL, Kacprowski T, Kent JW, Lange LA, Liu X, Lohman K, Lu L, Mahajan A, O'Connell JR, Parihar A, Peralta JM, Smith AV, Zhang Y, Homuth G, Kissebah AH, Kullberg J, Laqua R, Launer LJ, Nauck M, Olivier M, Peyser PA, Terry JG, Wojczynski MK, Yao J, Bielak LF, Blangero J, Borecki IB, Bowden DW, Carr JJ, Czerwinski SA, Ding J, Friedrich N, Gudnason V, Harris TB, Ingelsson E, Johnson AD, Kardia SL, Langefeld CD, Lind L, Liu Y, Mitchell BD, Morris AP, Mosley TH, Rotter JI, Shuldiner AR, Towne B, Völzke H, Wallaschofski H, Wilson JG, Allison M, Lindgren CM, Goessling W, Cupples LA, Steinhauser ML, Fox CS
(2017) Nat Genet 49: 125-130
MeSH Terms: Adipocytes, Animals, Body Fat Distribution, Cell Differentiation, Cohort Studies, Ethnic Groups, Female, Genetic Loci, Genetic Markers, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Mice, Mice, Inbred C57BL, Obesity, Phenotype, Polymorphism, Single Nucleotide
Show Abstract · Added September 11, 2017
Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue.
Xu H, Fu JL, Miao YF, Wang CJ, Han QF, Li S, Huang SZ, Du SN, Qiu YX, Yang JC, Gustafsson JÅ, Breyer RM, Zheng F, Wang NP, Zhang XY, Guan YF
(2016) J Mol Cell Biol 8: 518-529
MeSH Terms: Adipocytes, Adipogenesis, Adipose Tissue, White, Animals, Cell Differentiation, Gene Deletion, Inflammation, Insulin Resistance, Lipolysis, Lipoproteins, VLDL, Mice, Mice, Obese, Obesity, Phenotype, Protein Isoforms, Rats, Sprague-Dawley, Receptors, Prostaglandin E, EP3 Subtype, Signal Transduction, Triglycerides
Show Abstract · Added February 7, 2019
Among the four prostaglandin E2 receptors, EP3 receptor is the one most abundantly expressed in white adipose tissue (WAT). The mouse EP3 gene gives rise to three isoforms, namely EP3α, EP3β, and EP3γ, which differ only at their C-terminal tails. To date, functions of EP3 receptor and its isoforms in WAT remain incompletely characterized. In this study, we found that the expression of all EP3 isoforms were downregulated in WAT of both db/db and high-fat diet-induced obese mice. Genetic ablation of three EP3 receptor isoforms (EP3 mice) or EP3α and EP3γ isoforms with EP3β intact (EP3β mice) led to an obese phenotype with increased food intake, decreased motor activity, reduced insulin sensitivity, and elevated serum triglycerides. Since the differentiation of preadipocytes and mouse embryonic fibroblasts to adipocytes was markedly facilitated by either pharmacological blockade or genetic deletion/inhibition of EP3 receptor via the cAMP/PKA/PPARγ pathway, increased adipogenesis may contribute to obesity in EP3 and EP3β mice. Moreover, both EP3 and EP3β mice had increased lipolysis in WAT mainly due to the activated cAMP/PKA/hormone-sensitive lipase pathway. Taken together, our findings suggest that EP3 receptor and its α and γ isoforms are involved in both adipogenesis and lipolysis and influence food intake, serum lipid levels, and insulin sensitivity.
© The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
1 Communities
0 Members
0 Resources
MeSH Terms
IRF3 promotes adipose inflammation and insulin resistance and represses browning.
Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, Tenen D, Roh HC, Kong X, Kazak L, Ahmad R, Rosen ED
(2016) J Clin Invest 126: 2839-54
MeSH Terms: 3T3-L1 Cells, Adipocytes, Adipose Tissue, Adiposity, Adult, Animals, Blood Glucose, Diet, Female, Gene Expression Regulation, Glucose Clamp Technique, Glucose Transporter Type 4, HEK293 Cells, Homeostasis, Humans, Inflammation, Insulin Resistance, Interferon Regulatory Factor-3, Male, Mice, Mice, Transgenic, Middle Aged, NF-kappa B, Obesity, Toll-Like Receptor 3, Toll-Like Receptor 4
Show Abstract · Added May 16, 2019
The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.
0 Communities
1 Members
0 Resources
MeSH Terms
Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.
Satoh M, Hoshino M, Fujita K, Iizuka M, Fujii S, Clingan CS, Van Kaer L, Iwabuchi K
(2016) Sci Rep 6: 28473
MeSH Terms: 3T3-L1 Cells, Adipocytes, Adiponectin, Animals, Antigen Presentation, Antigens, CD1d, B7-1 Antigen, Diet, High-Fat, Disease Models, Animal, Disease Progression, Galactosylceramides, Insulin Resistance, Interferon-gamma, Lymphocyte Activation, Macrophage Activation, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Natural Killer T-Cells, Obesity
Show Abstract · Added July 30, 2016
It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Aldosterone in vascular and metabolic dysfunction.
Luther JM
(2016) Curr Opin Nephrol Hypertens 25: 16-21
MeSH Terms: Adipocytes, Aldosterone, Animals, Blood Glucose, Blood Pressure, Coronary Circulation, Diabetic Nephropathies, Humans, Mineralocorticoid Receptor Antagonists, Muscle, Smooth, Vascular, Receptors, Mineralocorticoid, Vascular Endothelial Growth Factor Receptor-1
Show Abstract · Added November 30, 2015
PURPOSE OF REVIEW - This review will highlight recent developments in mineralocorticoid receptor research which impact aldosterone-associated vascular and cardiometabolic dysfunction.
RECENT FINDINGS - The mineralocorticoid receptor is also expressed in vascular smooth muscle and vascular endothelium, and contributes to vascular function and remodeling. Adipocyte-derived leptin stimulates aldosterone secretion, which may explain the observed link between obesity and hyperaldosteronism. Adipocyte mineralocorticoid receptor overexpression produces systemic changes consistent with metabolic syndrome. Ongoing studies with novel nonsteroidal mineralocorticoid receptor antagonists may provide a novel treatment for diabetic nephropathy and heart failure in patients with chronic kidney disease, with reduced risk of hyperkalemia.
SUMMARY - Ongoing research continues to demonstrate novel roles of the vascular and adipocyte mineralocorticoid receptor function, which may explain the beneficial metabolic and vascular benefits of mineralocorticoid receptor antagonists.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes.
Love JD, Suzuki T, Robinson DB, Harris CM, Johnson JE, Mohler PJ, Jerome WG, Swift LL
(2015) PLoS One 10: e0135598
MeSH Terms: 3T3-L1 Cells, Adipocytes, Animals, Carrier Proteins, Cell Differentiation, Cytosol, Electrophoresis, Polyacrylamide Gel, Immunohistochemistry, Lipid Droplets, Mice, Microscopy, Fluorescence, Reverse Transcriptase Polymerase Chain Reaction
Show Abstract · Added September 30, 2015
Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.
0 Communities
2 Members
0 Resources
12 MeSH Terms