Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 84

Publication Record


Pancreatic Inflammation Redirects Acinar to β Cell Reprogramming.
Clayton HW, Osipovich AB, Stancill JS, Schneider JD, Vianna PG, Shanks CM, Yuan W, Gu G, Manduchi E, Stoeckert CJ, Magnuson MA
(2016) Cell Rep 17: 2028-2041
MeSH Terms: Acinar Cells, Adenoviridae, Alleles, Animals, Cellular Reprogramming, Diabetes Mellitus, Experimental, Doxycycline, Gene Expression Profiling, Homeodomain Proteins, Immunity, Inflammation, Insulin-Secreting Cells, Macrophages, Metaplasia, Mice, Transgenic, Organ Size, Pancreas, Pancreatic Ducts, Reproducibility of Results, Transcription Factors, Transgenes
Show Abstract · Added November 18, 2016
Using a transgenic mouse model to express MafA, Pdx1, and Neurog3 (3TF) in a pancreatic acinar cell- and doxycycline-dependent manner, we discovered that the outcome of transcription factor-mediated acinar to β-like cellular reprogramming is dependent on both the magnitude of 3TF expression and on reprogramming-induced inflammation. Overly robust 3TF expression causes acinar cell necrosis, resulting in marked inflammation and acinar-to-ductal metaplasia. Generation of new β-like cells requires limiting reprogramming-induced inflammation, either by reducing 3TF expression or by eliminating macrophages. The new β-like cells were able to reverse streptozotocin-induced diabetes 6 days after inducing 3TF expression but failed to sustain their function after removal of the reprogramming factors.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
3 Communities
2 Members
2 Resources
21 MeSH Terms
Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction.
Samaras SE, Almodóvar-García K, Wu N, Yu F, Davidson JM
(2015) Am J Pathol 185: 96-109
MeSH Terms: Adenoviridae, Animals, Cell Movement, Collagen, Crosses, Genetic, Exons, Female, Fibroblasts, Gels, Gene Deletion, Gene Expression Profiling, Genotype, Green Fluorescent Proteins, MAP Kinase Signaling System, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Muscle Proteins, Necrosis, Nuclear Proteins, Organ Size, Phenotype, Promoter Regions, Genetic, RNA, Recombination, Genetic, Repressor Proteins, Skin, Wound Healing
Show Abstract · Added January 20, 2015
The expression of ankyrin repeat domain protein 1 (Ankrd1), a transcriptional cofactor and sarcomeric component, is strongly elevated by wounding and tissue injury. We developed a conditional Ankrd1(fl/fl) mouse, performed global deletion with Sox2-cre, and assessed the role of this protein in cutaneous wound healing. Although global deletion of Ankrd1 did not affect mouse viability or development, Ankrd1(-/-) mice had at least two significant wound-healing phenotypes: extensive necrosis of ischemic skin flaps, which was reversed by adenoviral expression of ANKRD1, and delayed excisional wound closure, which was characterized by decreased contraction and reduced granulation tissue thickness. Skin fibroblasts isolated from Ankrd1(-/-) mice did not spread or migrate on collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from Ankrd1(fl/fl) mice. More important, Ankrd1(-/-) fibroblasts failed to contract three-dimensional floating collagen gels. Reconstitution of ANKRD1 by adenoviral infection stimulated both collagen gel contraction and actin fiber organization. These in vitro data were consistent with in vivo wound closure studies, and suggest that ANKRD1 is important for the proper interaction of fibroblasts with a compliant collagenous matrix both in vitro and in vivo.
Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
30 MeSH Terms
Prostaglandin E2 induction during mouse adenovirus type 1 respiratory infection regulates inflammatory mediator generation but does not affect viral pathogenesis.
McCarthy MK, Levine RE, Procario MC, McDonnell PJ, Zhu L, Mancuso P, Crofford LJ, Aronoff DM, Weinberg JB
(2013) PLoS One 8: e77628
MeSH Terms: Adenoviridae, Animals, Chemokine CCL5, Chemokine CXCL1, Dinoprostone, Interferon-gamma, Male, Mice, Mice, Mutant Strains, Real-Time Polymerase Chain Reaction, Respiratory Tract Infections, Virus Replication
Show Abstract · Added January 21, 2015
Respiratory viruses cause substantial disease and are a significant healthcare burden. Virus-induced inflammation can be detrimental to the host, causing symptoms during acute infection and leading to damage that contributes to long-term residual lung disease. Prostaglandin E2 (PGE2) is a lipid mediator that is increased in response to many viral infections, and inhibition of PGE2 production during respiratory viral infection often leads to a decreased inflammatory response. We tested the hypothesis that PGE2 promotes inflammatory responses to mouse adenovirus type 1 (MAV-1) respiratory infection. Acute MAV-1 infection increased COX-2 expression and PGE2 production in wild type mice. Deficiency of the E prostanoid 2 receptor had no apparent effect on MAV-1 pathogenesis. Virus-induced induction of PGE2, IFN-γ, CXCL1, and CCL5 was reduced in mice deficient in microsomal PGE synthase-1 (mPGES-1(-/-) mice). However, there were no differences between mPGES-1(+/+) and mPGES-1(-/-) mice in viral replication, recruitment of leukocytes to airways or lung inflammation. Infection of both mPGES‑1(+/+) and mPGES-1(-/-) mice led to protection against reinfection. Thus, while PGE2 promotes the expression of a variety of cytokines in response to acute MAV-1 infection, PGE2 synthesis does not appear to be essential for generating pulmonary immunity.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Cells expressing the C/EBPbeta isoform, LIP, engulf their neighbors.
Abreu M, Sealy L
(2012) PLoS One 7: e41807
MeSH Terms: Adenoviridae, Apoptosis, CCAAT-Enhancer-Binding Protein-beta, Cell Line, Tumor, Cytophagocytosis, DNA, Gene Expression, Genetic Vectors, Humans, Microscopy, Confocal, Protein Isoforms, rho GTP-Binding Proteins
Show Abstract · Added March 7, 2014
Descriptions of various processes that lead to cell-in-cell structures have been reported for decades. The exact molecular mechanism(s) of their formation and the physiological significance of cell-in-cell structures remain poorly understood. We had previously shown that an isoform of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcription factor, liver-enriched inhibitory protein (LIP), induces cell death in human breast cancer cells and stimulates autophagy. Here we describe a non-apoptotic cell death process where LIP mediates the engulfment of neighboring cells. We provide evidence of LIP-mediated engulfment via DNA profiling, fluorescent imaging and cell sorting studies, as well as ultrastructure analysis of LIP-expressing MDA-MB-468 breast cancer cells. Our work illustrates that expression of a specific transcription factor, LIP, can mediate cell engulfment.
0 Communities
1 Members
0 Resources
12 MeSH Terms
TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway.
Sánchez NS, Barnett JV
(2012) Cell Signal 24: 539-48
MeSH Terms: Adaptor Proteins, Signal Transducing, Adenoviridae, Animals, Bone Morphogenetic Protein 2, Cell Communication, Cell Differentiation, Cell Line, Cell Movement, Coronary Vessels, Epithelial Cells, Epithelial-Mesenchymal Transition, Gene Expression, Mice, Mice, Knockout, Pericardium, Proteoglycans, RNA, Small Interfering, Receptors, Transforming Growth Factor beta, Signal Transduction, Transfection, Transforming Growth Factor beta2, Ubiquitin-Protein Ligases, rhoA GTP-Binding Protein
Show Abstract · Added January 10, 2014
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3(-/-) mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3(+/+) cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3(-/-) epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3(-/-) cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.
Copyright © 2011 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
23 MeSH Terms
BCL::EM-Fit: rigid body fitting of atomic structures into density maps using geometric hashing and real space refinement.
Woetzel N, Lindert S, Stewart PL, Meiler J
(2011) J Struct Biol 175: 264-76
MeSH Terms: Adenoviridae, Algorithms, Cryoelectron Microscopy, Monte Carlo Method
Show Abstract · Added January 24, 2015
Cryo-electron microscopy (cryoEM) can visualize large macromolecular assemblies at resolutions often below 10Å and recently as good as 3.8-4.5 Å. These density maps provide important insights into the biological functioning of molecular machineries such as viruses or the ribosome, in particular if atomic-resolution crystal structures or models of individual components of the assembly can be placed into the density map. The present work introduces a novel algorithm termed BCL::EM-Fit that accurately fits atomic-detail structural models into medium resolution density maps. In an initial step, a "geometric hashing" algorithm provides a short list of likely placements. In a follow up Monte Carlo/Metropolis refinement step, the initial placements are optimized by their cross correlation coefficient. The resolution of density maps for a reliable fit was determined to be 10 Å or better using tests with simulated density maps. The algorithm was applied to fitting of capsid proteins into an experimental cryoEM density map of human adenovirus at a resolution of 6.8 and 9.0 Å, and fitting of the GroEL protein at 5.4 Å. In the process, the handedness of the cryoEM density map was unambiguously identified. The BCL::EM-Fit algorithm offers an alternative to the established Fourier/Real space fitting programs. BCL::EM-Fit is free for academic use and available from a web server or as downloadable binary file at http://www.meilerlab.org.
Copyright © 2011 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
4 MeSH Terms
Hepatic hepatocyte nuclear factor 4α is essential for maintaining triglyceride and cholesterol homeostasis.
Yin L, Ma H, Ge X, Edwards PA, Zhang Y
(2011) Arterioscler Thromb Vasc Biol 31: 328-36
MeSH Terms: Adenoviridae, Animals, Cells, Cultured, Cholesterol, Cholesterol, HDL, Cholesterol, VLDL, Fatty Liver, Hepatocyte Nuclear Factor 4, Hepatocytes, Homeostasis, Lipid Metabolism, Mice, Mice, Inbred C57BL, Models, Animal, RNA, Small Interfering, Triglycerides
Show Abstract · Added July 21, 2014
OBJECTIVE - Loss-of-function mutations in human hepatocyte nuclear factor 4α (HNF4α) are associated with maturity-onset diabetes of the young and lipid disorders. However, the mechanisms underlying the lipid disorders are poorly understood. In this study, we determined the effect of acute loss or augmentation of hepatic HNF4α function on lipid homeostasis.
METHODS AND RESULTS - We generated an adenovirus expressing LacZ (Ad-shLacZ) or short hairpin RNA of Hnf4α (Ad-shHnf4α). Tail vain injection of C57BL/6J mice with Ad-shHnf4α reduced hepatic Hnf4α expression and resulted in striking phenotypes, including the development of fatty liver and a >80% decrease in plasma levels of triglycerides, total cholesterol, and high-density lipoprotein cholesterol. These latter changes were associated with reduced hepatic lipogenesis and impaired very-low-density lipoprotein secretion. Deficiency in hepatic Hnf4α did not affect intestinal cholesterol absorption despite decreased expression of genes involved in bile acid synthesis. Consistent with the loss-of-function data, overexpression of Hnf4α induced numerous genes involved in lipid metabolism in isolated primary hepatocytes. Interestingly, many of these HNF4α-regulated genes were not induced in wild-type mice that overexpressed hepatic Hnf4α. Because of selective gene regulation, mice overexpressing hepatic Hnf4α had unchanged plasma triglyceride levels and decreased plasma cholesterol levels.
CONCLUSIONS - Loss of hepatic HNF4α results in severe lipid disorder as a result of dysregulation of multiple genes involved in lipid metabolism. In contrast, augmentation of hepatic HNF4α activity lowers plasma cholesterol levels but has no effect on plasma triglyceride levels because of selective gene regulation. Our data indicate that hepatic HNF4α is essential for controlling the basal expression of numerous genes involved in lipid metabolism and is indispensable for maintaining normal lipid homeostasis.
1 Communities
0 Members
0 Resources
16 MeSH Terms
Calcium gluconate in phosphate buffered saline increases gene delivery with adenovirus type 5.
Ahonen MT, Diaconu I, Pesonen S, Kanerva A, Baumann M, Parviainen ST, Spiller B, Cerullo V, Hemminki A
(2010) PLoS One 5:
MeSH Terms: Adenoviridae, Animals, Buffers, Calcium Gluconate, Cell Line, Tumor, Cricetinae, Gene Transfer Techniques, Genetic Therapy, Genetic Vectors, Humans, Mice, Mice, Inbred C57BL, Mice, Inbred ICR, Mice, Nude, Phosphates
Show Abstract · Added May 29, 2014
BACKGROUND - Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important.
METHODS/RESULTS - We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly.
CONCLUSION - In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Impaired-inactivation of FoxO1 contributes to glucose-mediated increases in serum very low-density lipoprotein.
Wu K, Cappel D, Martinez M, Stafford JM
(2010) Endocrinology 151: 3566-76
MeSH Terms: Adenoviridae, Animals, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Cell Nucleus, Forkhead Transcription Factors, Glucose, Glucose Clamp Technique, Hyperinsulinism, Insulin, Lipid Metabolism, Lipoproteins, VLDL, Liver, Male, Nerve Tissue Proteins, Rats, Rats, Long-Evans, Rats, Transgenic, Transduction, Genetic, Up-Regulation
Show Abstract · Added October 8, 2015
For patients with diabetes, insulin resistance and hyperglycemia both contribute to increased serum triglyceride in the form of very low-density lipoprotein (VLDL). Our objective was to define the insulin conditions in which hyperglycemia promotes increased serum VLDL in vivo. We performed hyperglycemic-hyperinsulinemic clamp studies and hyperglycemic-hypoinsulinemic clamp studies in rats, with metabolic tracers for glucose flux and de novo fatty acid synthesis. When blood glucose was clamped at hyperglycemia (17 mm) for 2 h under hyperinsulinemic conditions (4 mU/kg . min), serum VLDL levels were not increased compared with baseline. We speculated that hyperinsulinemia minimized glucose-mediated VLDL changes and performed hyperglycemic-hypoinsulinemic clamp studies in which insulin was clamped near fasting levels with somatostatin (17 mm blood glucose, 0.25 mU/kg . min insulin). Under low-insulin conditions, serum VLDL levels were increased 4.7-fold after hyperglycemia, and forkhead box O1 (FoxO1) was not excluded from the nucleus of liver cells. We tested the extent that impaired inactivation of FoxO1 by insulin was sufficient for glucose to promote increased serum VLDL. We found that, when the ability of insulin to inactivate FoxO1 is blocked after adenoviral delivery of constitutively active FoxO1, glucose increased serum VLDL triglyceride when given both by ip glucose tolerance testing (3.5-fold increase) and by a hyperglycemic clamp (4.6-fold). Under both experimental conditions in which insulin signaling to FoxO1 was impaired, we found increased activation of carbohydrate response element binding protein. These data suggest that glucose more potently promotes increased serum VLDL when insulin action is impaired, with either low insulin levels or disrupted downstream signaling to the transcription factor FoxO1.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system.
Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, Gordon FJ, Harrison DG
(2010) Hypertension 55: 277-83, 6p following 283
MeSH Terms: Adenoviridae, Angiotensin II, Animals, Blood Pressure Determination, Central Nervous System, Disease Models, Animal, Heart Rate, Hypertension, Inflammation, Inflammation Mediators, Integrases, Mice, Mice, Inbred C57BL, Oxidative Stress, RNA, Messenger, Random Allocation, Reactive Oxygen Species, Superoxide Dismutase
Show Abstract · Added December 10, 2013
The circumventricular organs (CVOs) lack a well-formed blood-brain barrier and produce superoxide in response to angiotensin II and other hypertensive stimuli. This increase in central superoxide has been implicated in the regulation of blood pressure. The extracellular superoxide dismutase (SOD3) is highly expressed in cells associated with CVOs and particularly with tanycytes lining this region. To understand the role of SOD3 in the CVOs in blood pressure regulation, we performed intracerebroventricular injection an adenovirus encoding Cre-recombinase (5x10(8) particles per milliliter) in mice with loxP sites flanking the SOD3 coding region (SOD3(loxp/loxp) mice). An adenovirus encoding red-fluorescent protein was injected as a control. Deletion of CVO SOD3 increased baseline blood pressure modestly and markedly augmented the hypertensive response to low-dose angiotensin II (140 ng/kg per day), whereas intracerebroventricular injection of adenovirus encoding red-fluorescent protein had minimal effects on these parameters. Adenovirus encoding Cre-recombinase-treated mice exhibited increased sympathetic modulation of heart rate and blood pressure variability, increased vascular superoxide production, and T-cell activation as characterized by increased circulating CD69(+)/CD3(+) cells. Deletion of CVO SOD3 also markedly increased vascular T-cell and leukocyte infiltration caused by angiotensin II. We conclude that SOD3 in the CVO plays a critical role in the regulation of blood pressure, and its loss promotes T-cell activation and vascular inflammation, in part by modulating sympathetic outflow. These findings provide insight into how central signals produce vascular inflammation in response to hypertensive stimuli, such as angiotensin II.
1 Communities
1 Members
0 Resources
18 MeSH Terms