Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 163

Publication Record

Connections

The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism.
Fensterheim BA, Young JD, Luan L, Kleinbard RR, Stothers CL, Patil NK, McAtee-Pereira AG, Guo Y, Trenary I, Hernandez A, Fults JB, Williams DL, Sherwood ER, Bohannon JK
(2018) J Immunol 200: 3777-3789
MeSH Terms: Adenosine Triphosphate, Animals, Candida albicans, Candidiasis, Glycolysis, Lipid A, Macrophages, Male, Mice, Mice, Inbred C57BL, Myeloid Differentiation Factor 88, Signal Transduction, Staphylococcal Infections, Staphylococcus aureus, TOR Serine-Threonine Kinases, Toll-Like Receptor 4
Show Abstract · Added March 28, 2019
Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with and that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.
Copyright © 2018 by The American Association of Immunologists, Inc.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Regional differences in brain glucose metabolism determined by imaging mass spectrometry.
Kleinridders A, Ferris HA, Reyzer ML, Rath M, Soto M, Manier ML, Spraggins J, Yang Z, Stanton RC, Caprioli RM, Kahn CR
(2018) Mol Metab 12: 113-121
MeSH Terms: Adenosine Triphosphate, Animals, Basal Metabolism, Brain, Fasting, Glucose, Glycolysis, Male, Mass Spectrometry, Mice, Mice, Inbred C57BL, Organ Specificity, Pentose Phosphate Pathway
Show Abstract · Added March 26, 2019
OBJECTIVE - Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS).
METHODS - To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism.
RESULTS - In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate.
CONCLUSION - These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Regulation of ATP utilization during metastatic cell migration by collagen architecture.
Zanotelli MR, Goldblatt ZE, Miller JP, Bordeleau F, Li J, VanderBurgh JA, Lampi MC, King MR, Reinhart-King CA
(2018) Mol Biol Cell 29: 1-9
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Animals, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Collagen, Extracellular Matrix, Female, Glucose, HEK293 Cells, Humans, Intracellular Space, Neoplasm Metastasis, Rats, Serum
Show Abstract · Added April 10, 2019
Cell migration in a three-dimensional matrix requires that cells either remodel the surrounding matrix fibers and/or squeeze between the fibers to move. Matrix degradation, matrix remodeling, and changes in cell shape each require cells to expend energy. While significant research has been performed to understand the cellular and molecular mechanisms guiding metastatic migration, less is known about cellular energy regulation and utilization during three-dimensional cancer cell migration. Here we introduce the use of the genetically encoded fluorescent biomarkers, PercevalHR and pHRed, to quantitatively assess ATP, ADP, and pH levels in MDA-MB-231 metastatic cancer cells as a function of the local collagen microenvironment. We find that the use of the probe is an effective tool for exploring the thermodynamics of cancer cell migration and invasion. Specifically, we find that the ATP:ADP ratio increases in cells in denser matrices, where migration is impaired, and it decreases in cells in aligned collagen matrices, where migration is facilitated. When migration is pharmacologically inhibited, the ATP:ADP ratio decreases. Together, our data indicate that matrix architecture alters cellular energetics and that intracellular ATP:ADP ratio is related to the ability of cancer cells to effectively migrate.
© 2018 Zanotelli, Goldblatt, Miller, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
2 Members
0 Resources
MeSH Terms
Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles.
Kothiwale S, Borza C, Pozzi A, Meiler J
(2017) Molecules 22:
MeSH Terms: Adenosine Triphosphate, Area Under Curve, Binding Sites, Databases, Pharmaceutical, Drug Discovery, Models, Molecular, Neural Networks (Computer), Protein Binding, Protein Conformation, Protein Kinase Inhibitors, Protein-Tyrosine Kinases, Quantitative Structure-Activity Relationship, ROC Curve, Software
Show Abstract · Added November 2, 2017
The discovery of selective inhibitors of biological target proteins is the primary goal of many drug discovery campaigns. However, this goal has proven elusive, especially for inhibitors targeting the well-conserved orthosteric adenosine triphosphate (ATP) binding pocket of kinase enzymes. The human kinome is large and it is rather difficult to profile early lead compounds against around 500 targets to gain an upfront knowledge on selectivity. Further, selectivity can change drastically during derivatization of an initial lead compound. Here, we have introduced a computational model to support the profiling of compounds early in the drug discovery pipeline. On the basis of the extensive profiled activity of 70 kinase inhibitors against 379 kinases, including 81 tyrosine kinases, we developed a quantitative structure-activity relation (QSAR) model using artificial neural networks, to predict the activity of these kinase inhibitors against the panel of 379 kinases. The model's performance in predicting activity ranges from 0.6 to 0.8 depending on the kinase, from the area under the curve (AUC) of the receiver operating characteristics (ROC). The profiler is available online at http://www.meilerlab.org/index.php/servers/show?s_id=23.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity.
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A
(2018) Diabetologia 61: 182-192
MeSH Terms: Adenosine Triphosphate, Animals, Insulin, Insulin-Secreting Cells, Islets of Langerhans, Macrophages, Mice, Pancreas
Show Abstract · Added March 21, 2018
AIMS/HYPOTHESIS - Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells.
METHODS - To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells.
RESULTS - Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity.
CONCLUSIONS/INTERPRETATION - Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate.
Dixit S, Fessel JP, Harrison FE
(2017) Free Radic Biol Med 112: 515-523
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Alzheimer Disease, Amyloid beta-Protein Precursor, Animals, Antioxidants, Ascorbic Acid, Biological Transport, Disease Models, Animal, Female, Gene Expression Regulation, Heterozygote, Humans, Male, Membrane Potential, Mitochondrial, Mice, Mice, Transgenic, Mitochondria, Mutation, Oxidative Stress, Oxygen Consumption, Presenilin-1, Reactive Oxygen Species, Signal Transduction, Sodium-Coupled Vitamin C Transporters
Show Abstract · Added March 14, 2018
Mitochondrial dysfunction is elevated in very early stages of Alzheimer's disease and exacerbates oxidative stress, which contributes to disease pathology. Mitochondria were isolated from 4-month-old wild-type mice, transgenic mice carrying the APP and PSEN1 mutations, mice with decreased brain and mitochondrial ascorbate (vitamin C) via heterozygous knockout of the sodium dependent vitamin C transporter (SVCT2) and transgenic APP/PSEN1 mice with heterozygous SVCT2 expression. Mitochondrial isolates from SVCT2 mice were observed to consume less oxygen using high-resolution respirometry, and also exhibited decreased mitochondrial membrane potential compared to wild type isolates. Conversely, isolates from young (4 months) APP/PSEN1 mice consumed more oxygen, and exhibited an increase in mitochondrial membrane potential, but had a significantly lower ATP/ADP ratio compared to wild type isolates. Greater levels of reactive oxygen species were also produced in mitochondria isolated from both APP/PSEN1 and SVCT2 mice compared to wild type isolates. Acute administration of ascorbate to mitochondria isolated from wild-type mice increased oxygen consumption compared with untreated mitochondria suggesting ascorbate may support energy production. This study suggests that both presence of amyloid and ascorbate deficiency can contribute to mitochondrial dysfunction, even at an early, prodromal stage of Alzheimer's disease, although occurring via different pathways. Ascorbate may, therefore, provide a useful preventative strategy against neurodegenerative disease, particularly in populations most at risk for Alzheimer's disease in which stores are often depleted through mitochondrial dysfunction and elevated oxidative stress.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Adenosine triphosphate as a molecular mediator of the vascular response to injury.
Guth CM, Luo W, Jolayemi O, Chadalavada KS, Komalavilas P, Cheung-Flynn J, Brophy CM
(2017) J Surg Res 216: 80-86
MeSH Terms: Adenosine Triphosphate, Animals, Aorta, Abdominal, Biomarkers, Biomechanical Phenomena, Blotting, Western, Female, Muscle Contraction, Rats, Rats, Sprague-Dawley, Receptors, Purinergic P2X7, Stress, Mechanical, Vascular System Injuries, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added May 22, 2018
BACKGROUND - Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation.
MATERIALS AND METHODS - A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed.
RESULTS - Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK.
CONCLUSIONS - Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Pyridine Dinucleotides from Molecules to Man.
Fessel JP, Oldham WM
(2018) Antioxid Redox Signal 28: 180-212
MeSH Terms: ADP-ribosyl Cyclase 1, Adenosine Triphosphate, Biosynthetic Pathways, Catalysis, Disease Susceptibility, Energy Metabolism, Homeostasis, Humans, Hydrolysis, Intracellular Space, Male, Mitochondria, NAD, NADP, NADPH Oxidases, Nitric Oxide Synthase, Oxidation-Reduction, Pyridines, Reactive Oxygen Species, Stress, Physiological
Show Abstract · Added March 14, 2018
SIGNIFICANCE - Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease.
CRITICAL ISSUES - Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive.
FUTURE DIRECTIONS - As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation.
Hasenour CM, Ridley DE, James FD, Hughey CC, Donahue EP, Viollet B, Foretz M, Young JD, Wasserman DH
(2017) PLoS One 12: e0170382
MeSH Terms: AMP-Activated Protein Kinases, Adenosine Triphosphate, Animals, Energy Metabolism, Gluconeogenesis, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout
Show Abstract · Added April 27, 2017
AMPK is an energy sensor that protects cellular energy state by attenuating anabolic and promoting catabolic processes. AMPK signaling is purported to regulate hepatic gluconeogenesis and substrate oxidation; coordination of these processes is vital during nutrient deprivation or pathogenic during overnutrition. Here we directly test hepatic AMPK function in regulating metabolic fluxes that converge to produce glucose and energy in vivo. Flux analysis was applied in mice with a liver-specific deletion of AMPK (L-KO) or floxed control littermates to assess rates of hepatic glucose producing and citric acid cycle (CAC) fluxes. Fluxes were assessed in short and long term fasted mice; the latter condition is a nutrient stressor that increases liver AMP/ATP. The flux circuit connecting anaplerosis with gluconeogenesis from the CAC was unaffected by hepatic AMPK deletion in short and long term fasting. Nevertheless, depletion of hepatic ATP was exacerbated in L-KO mice, corresponding to a relative elevation in citrate synthase flux and accumulation of branched-chain amino acid-related metabolites. L-KO mice also had a physiological reduction in flux from glycogen to G6P. These results demonstrate AMPK is unnecessary for maintaining gluconeogenic flux from the CAC yet is critical for stabilizing liver energy state during nutrient deprivation.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers.
Lark DS, Torres MJ, Lin CT, Ryan TE, Anderson EJ, Neufer PD
(2016) Am J Physiol Cell Physiol 311: C239-45
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Adenylate Kinase, Animals, Glucosephosphate Dehydrogenase, Hexokinase, Male, Mice, Mice, Inbred C57BL, Mitochondria, Muscle Fibers, Skeletal, NADP, Oxidative Phosphorylation, Oxygen Consumption
Show Abstract · Added October 17, 2016
Oxidative phosphorylation (OXPHOS) efficiency, defined as the ATP-to-O ratio, is a critical feature of mitochondrial function that has been implicated in health, aging, and disease. To date, however, the methods to measure ATP/O have primarily relied on indirect approaches or entail parallel rather than simultaneous determination of ATP synthesis and O2 consumption rates. The purpose of this project was to develop and validate an approach to determine the ATP/O ratio in permeabilized fiber bundles (PmFBs) from simultaneous measures of ATP synthesis (JATP) and O2 consumption (JO2 ) rates in real time using a custom-designed apparatus. JO2 was measured via a polarigraphic oxygen sensor and JATP via fluorescence using an enzyme-linked assay system (hexokinase II, glucose-6-phosphate dehydrogenase) linked to NADPH production. Within the dynamic linear range of the assay system, ADP-stimulated increases in steady-state JATP mirrored increases in steady-state JO2 (r(2) = 0.91, P < 0.0001, n = 57 data points). ATP/O ratio was less than one under low rates of respiration (15 μM ADP) but increased to more than two at moderate (200 μM ADP) and maximal (2,000 μM ADP) rates of respiration with an interassay coefficient of variation of 24.03, 16.72, and 11.99%, respectively. Absolute and relative (to mechanistic) ATP/O ratios were lower in PmFBs (2.09 ± 0.251, 84%) compared with isolated mitochondria (2.44 ± 0.124, 98%). ATP/O ratios in PmFBs were not affected by the activity of adenylate kinase or creatine kinase. These findings validate an enzyme-linked respiratory clamp system for measuring OXPHOS efficiency in PmFBs and provide evidence that OXPHOS efficiency increases as energy demand increases.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
14 MeSH Terms