Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 169

Publication Record


Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways.
Cheung-Flynn J, Alvis BD, Hocking KM, Guth CM, Luo W, McCallister R, Chadalavada K, Polcz M, Komalavilas P, Brophy CM
(2019) PLoS One 14: e0220893
MeSH Terms: Adenosine Triphosphate, Animals, Aorta, Cell Membrane, Endothelial Cells, Humans, Inflammation, Intracellular Signaling Peptides and Proteins, Phosphorylation, Protein-Serine-Threonine Kinases, Rats, Receptors, Purinergic P2X7, Saline Solution, Saphenous Vein, Signal Transduction, Swine, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added March 3, 2020
Resuscitation with 0.9% Normal Saline (NS), a non-buffered acidic solution, leads to increased morbidity and mortality in the critically ill. The goal of this study was to determine the molecular mechanisms of endothelial injury after exposure to NS. The hypothesis of this investigation is that exposure of endothelium to NS would lead to loss of cell membrane integrity, resulting in release of ATP, activation of the purinergic receptor (P2X7R), and subsequent activation of stress activated signaling pathways and inflammation. Human saphenous vein endothelial cells (HSVEC) incubated in NS, but not buffered electrolyte solution (Plasma-Lyte, PL), exhibited abnormal morphology and increased release of lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and decreased transendothelial resistance (TEER), suggesting loss of membrane integrity. Incubation of intact rat aorta (RA) or human saphenous vein in NS but not PL led to impaired endothelial-dependent relaxation which was ameliorated by apyrase (hydrolyzes ATP) or SB203580 (p38 MAPK inhibitor). Exposure of HSVEC to NS but not PL led to activation of p38 MAPK and its downstream substrate, MAPKAP kinase 2 (MK2). Treatment of HSVEC with exogenous ATP led to interleukin 1β (IL-1β) release and increased vascular cell adhesion molecule (VCAM) expression. Treatment of RA with IL-1β led to impaired endothelial relaxation. IL-1β treatment of HSVEC led to increases in p38 MAPK and MK2 phosphorylation, and increased levels of arginase II. Incubation of porcine saphenous vein (PSV) in PL with pH adjusted to 6.0 or less also led to impaired endothelial function, suggesting that the acidic nature of NS is what contributes to endothelial dysfunction. Volume overload resuscitation in a porcine model after hemorrhage with NS, but not PL, led to acidosis and impaired endothelial function. These data suggest that endothelial dysfunction caused by exposure to acidic, non-buffered NS is associated with loss of membrane integrity, release of ATP, and is modulated by P2X7R-mediated inflammatory responses.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells.
Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F, Reinhart-King CA
(2019) Proc Natl Acad Sci U S A 116: 7867-7872
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Energy Metabolism, Female, Glucose, Humans, Intracellular Space, Neoplasm Invasiveness
Show Abstract · Added April 10, 2019
The ability of primary tumor cells to invade into adjacent tissues, followed by the formation of local or distant metastasis, is a lethal hallmark of cancer. Recently, locomoting clusters of tumor cells have been identified in numerous cancers and associated with increased invasiveness and metastatic potential. However, how the collective behaviors of cancer cells are coordinated and their contribution to cancer invasion remain unclear. Here we show that collective invasion of breast cancer cells is regulated by the energetic statuses of leader and follower cells. Using a combination of in vitro spheroid and ex vivo organoid invasion models, we found that cancer cells dynamically rearrange leader and follower positions during collective invasion. Cancer cells invade cooperatively in denser collagen matrices by accelerating leader-follower switching thus decreasing leader cell lifetime. Leader cells exhibit higher glucose uptake than follower cells. Moreover, their energy levels, as revealed by the intracellular ATP/ADP ratio, must exceed a threshold to invade. Forward invasion of the leader cell gradually depletes its available energy, eventually leading to leader-follower transition. Our computational model based on intracellular energy homeostasis successfully recapitulated the dependence of leader cell lifetime on collagen density. Experiments further supported model predictions that decreasing the cellular energy level by glucose starvation decreases leader cell lifetime whereas increasing the cellular energy level by AMP-activated kinase (AMPK) activation does the opposite. These findings highlight coordinated invasion and its metabolic regulation as potential therapeutic targets of cancer.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Insight on mutation-induced resistance to anaplastic lymphoma kinase inhibitor ceritinib from molecular dynamics simulations.
He MY, Li WK, Meiler J, Zheng QC, Zhang HX
(2019) Biopolymers 110: e23257
MeSH Terms: Adenosine Triphosphate, Anaplastic Lymphoma Kinase, Binding Sites, Drug Resistance, Neoplasm, Humans, Molecular Dynamics Simulation, Mutagenesis, Site-Directed, Neoplasms, Principal Component Analysis, Protein Kinase Inhibitors, Protein Structure, Tertiary, Pyrimidines, Sulfones
Show Abstract · Added March 21, 2020
Ceritinib, an advanced anaplastic lymphoma kinase (ALK) next-generation inhibitor, has been proved excellent antitumor activity in the treatment of ALK-associated cancers. However, the accumulation of acquired resistance mutations compromise the therapeutic efficacy of ceritinib. Despite abundant mutagenesis data, the structural determinants for reduced ceritinib binding in mutants remains elusive. Focusing on the G1123S and F1174C mutations, we applied molecular dynamics (MD) simulations to study possible reasons for drug resistance caused by these mutations. The MD simulations predict that the studied mutations allosterically impact the configurations of the ATP-binding pocket. An important hydrophobic cluster is identified that connects P-loop and the αC-helix, which has effects on stabilizing the conformation of ATP-binding pocket. It is suggested, in this study, that the G1123S and F1174C mutations can induce the conformational change of P-loop thereby causing the reduced ceritinib affinity and causing drug resistance.
© 2019 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Crystallographic and kinetic analyses of human IPMK reveal disordered domains modulate ATP binding and kinase activity.
Seacrist CD, Blind RD
(2018) Sci Rep 8: 16672
MeSH Terms: Adenosine Triphosphate, Crystallography, Humans, Inositol Phosphates, Kinetics, Phosphorylation, Phosphotransferases (Alcohol Group Acceptor), Protein Binding, Protein Structure, Secondary, Signal Transduction
Show Abstract · Added January 19, 2019
Inositol polyphosphate multikinase (IPMK) is a member of the IPK-superfamily of kinases, catalyzing phosphorylation of several soluble inositols and the signaling phospholipid PI(4,5)P (PIP). IPMK also has critical non-catalytic roles in p53, mTOR/Raptor, TRAF6 and AMPK signaling mediated partly by two disordered domains. Although IPMK non-catalytic functions are well established, it is less clear if the disordered domains are important for IPMK kinase activity or ATP binding. Here, kinetic and structural analyses of an engineered human IPMK lacking all disordered domains (ΔIPMK) are presented. Although the K for PIP is identical between ΔIPMK and wild type, ΔIPMK has a 1.8-fold increase in k for PIP, indicating the native IPMK disordered domains decrease IPMK activity in vitro. The 2.5 Å crystal structure of ΔIPMK is reported, confirming the conserved ATP-grasp fold. A comparison with other IPK-superfamily structures revealed a putative "ATP-clamp" in the disordered N-terminus, we predicted would stabilize ATP binding. Consistent with this observation, removal of the ATP clamp sequence increases the K for ATP 4.9-fold, indicating the N-terminus enhances ATP binding to IPMK. Together, these structural and kinetic studies suggest in addition to mediating protein-protein interactions, the disordered domains of IPMK impart modulatory capacity to IPMK kinase activity through multiple kinetic mechanisms.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism.
Fensterheim BA, Young JD, Luan L, Kleinbard RR, Stothers CL, Patil NK, McAtee-Pereira AG, Guo Y, Trenary I, Hernandez A, Fults JB, Williams DL, Sherwood ER, Bohannon JK
(2018) J Immunol 200: 3777-3789
MeSH Terms: Adenosine Triphosphate, Animals, Candida albicans, Candidiasis, Glycolysis, Lipid A, Macrophages, Male, Mice, Mice, Inbred C57BL, Myeloid Differentiation Factor 88, Signal Transduction, Staphylococcal Infections, Staphylococcus aureus, TOR Serine-Threonine Kinases, Toll-Like Receptor 4
Show Abstract · Added March 28, 2019
Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with and that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.
Copyright © 2018 by The American Association of Immunologists, Inc.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Regional differences in brain glucose metabolism determined by imaging mass spectrometry.
Kleinridders A, Ferris HA, Reyzer ML, Rath M, Soto M, Manier ML, Spraggins J, Yang Z, Stanton RC, Caprioli RM, Kahn CR
(2018) Mol Metab 12: 113-121
MeSH Terms: Adenosine Triphosphate, Animals, Basal Metabolism, Brain, Fasting, Glucose, Glycolysis, Male, Mass Spectrometry, Mice, Mice, Inbred C57BL, Organ Specificity, Pentose Phosphate Pathway
Show Abstract · Added March 26, 2019
OBJECTIVE - Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS).
METHODS - To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism.
RESULTS - In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate.
CONCLUSION - These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Regulation of ATP utilization during metastatic cell migration by collagen architecture.
Zanotelli MR, Goldblatt ZE, Miller JP, Bordeleau F, Li J, VanderBurgh JA, Lampi MC, King MR, Reinhart-King CA
(2018) Mol Biol Cell 29: 1-9
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Animals, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Collagen, Extracellular Matrix, Female, Glucose, HEK293 Cells, Humans, Intracellular Space, Neoplasm Metastasis, Rats, Serum
Show Abstract · Added April 10, 2019
Cell migration in a three-dimensional matrix requires that cells either remodel the surrounding matrix fibers and/or squeeze between the fibers to move. Matrix degradation, matrix remodeling, and changes in cell shape each require cells to expend energy. While significant research has been performed to understand the cellular and molecular mechanisms guiding metastatic migration, less is known about cellular energy regulation and utilization during three-dimensional cancer cell migration. Here we introduce the use of the genetically encoded fluorescent biomarkers, PercevalHR and pHRed, to quantitatively assess ATP, ADP, and pH levels in MDA-MB-231 metastatic cancer cells as a function of the local collagen microenvironment. We find that the use of the probe is an effective tool for exploring the thermodynamics of cancer cell migration and invasion. Specifically, we find that the ATP:ADP ratio increases in cells in denser matrices, where migration is impaired, and it decreases in cells in aligned collagen matrices, where migration is facilitated. When migration is pharmacologically inhibited, the ATP:ADP ratio decreases. Together, our data indicate that matrix architecture alters cellular energetics and that intracellular ATP:ADP ratio is related to the ability of cancer cells to effectively migrate.
© 2018 Zanotelli, Goldblatt, Miller, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
2 Members
0 Resources
MeSH Terms
Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles.
Kothiwale S, Borza C, Pozzi A, Meiler J
(2017) Molecules 22:
MeSH Terms: Adenosine Triphosphate, Area Under Curve, Binding Sites, Databases, Pharmaceutical, Drug Discovery, Models, Molecular, Neural Networks, Computer, Protein Binding, Protein Conformation, Protein Kinase Inhibitors, Protein-Tyrosine Kinases, Quantitative Structure-Activity Relationship, ROC Curve, Software
Show Abstract · Added November 2, 2017
The discovery of selective inhibitors of biological target proteins is the primary goal of many drug discovery campaigns. However, this goal has proven elusive, especially for inhibitors targeting the well-conserved orthosteric adenosine triphosphate (ATP) binding pocket of kinase enzymes. The human kinome is large and it is rather difficult to profile early lead compounds against around 500 targets to gain an upfront knowledge on selectivity. Further, selectivity can change drastically during derivatization of an initial lead compound. Here, we have introduced a computational model to support the profiling of compounds early in the drug discovery pipeline. On the basis of the extensive profiled activity of 70 kinase inhibitors against 379 kinases, including 81 tyrosine kinases, we developed a quantitative structure-activity relation (QSAR) model using artificial neural networks, to predict the activity of these kinase inhibitors against the panel of 379 kinases. The model's performance in predicting activity ranges from 0.6 to 0.8 depending on the kinase, from the area under the curve (AUC) of the receiver operating characteristics (ROC). The profiler is available online at http://www.meilerlab.org/index.php/servers/show?s_id=23.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity.
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A
(2018) Diabetologia 61: 182-192
MeSH Terms: Adenosine Triphosphate, Animals, Insulin, Insulin-Secreting Cells, Islets of Langerhans, Macrophages, Mice, Pancreas
Show Abstract · Added March 21, 2018
AIMS/HYPOTHESIS - Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells.
METHODS - To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells.
RESULTS - Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity.
CONCLUSIONS/INTERPRETATION - Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate.
Dixit S, Fessel JP, Harrison FE
(2017) Free Radic Biol Med 112: 515-523
MeSH Terms: Adenosine Diphosphate, Adenosine Triphosphate, Alzheimer Disease, Amyloid beta-Protein Precursor, Animals, Antioxidants, Ascorbic Acid, Biological Transport, Disease Models, Animal, Female, Gene Expression Regulation, Heterozygote, Humans, Male, Membrane Potential, Mitochondrial, Mice, Mice, Transgenic, Mitochondria, Mutation, Oxidative Stress, Oxygen Consumption, Presenilin-1, Reactive Oxygen Species, Signal Transduction, Sodium-Coupled Vitamin C Transporters
Show Abstract · Added March 14, 2018
Mitochondrial dysfunction is elevated in very early stages of Alzheimer's disease and exacerbates oxidative stress, which contributes to disease pathology. Mitochondria were isolated from 4-month-old wild-type mice, transgenic mice carrying the APP and PSEN1 mutations, mice with decreased brain and mitochondrial ascorbate (vitamin C) via heterozygous knockout of the sodium dependent vitamin C transporter (SVCT2) and transgenic APP/PSEN1 mice with heterozygous SVCT2 expression. Mitochondrial isolates from SVCT2 mice were observed to consume less oxygen using high-resolution respirometry, and also exhibited decreased mitochondrial membrane potential compared to wild type isolates. Conversely, isolates from young (4 months) APP/PSEN1 mice consumed more oxygen, and exhibited an increase in mitochondrial membrane potential, but had a significantly lower ATP/ADP ratio compared to wild type isolates. Greater levels of reactive oxygen species were also produced in mitochondria isolated from both APP/PSEN1 and SVCT2 mice compared to wild type isolates. Acute administration of ascorbate to mitochondria isolated from wild-type mice increased oxygen consumption compared with untreated mitochondria suggesting ascorbate may support energy production. This study suggests that both presence of amyloid and ascorbate deficiency can contribute to mitochondrial dysfunction, even at an early, prodromal stage of Alzheimer's disease, although occurring via different pathways. Ascorbate may, therefore, provide a useful preventative strategy against neurodegenerative disease, particularly in populations most at risk for Alzheimer's disease in which stores are often depleted through mitochondrial dysfunction and elevated oxidative stress.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms