Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 69

Publication Record

Connections

A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies.
Jao LE, Akef A, Wente SR
(2017) Mol Biol Cell 28: 120-127
MeSH Terms: Active Transport, Cell Nucleus, Adenosine Triphosphatases, Antigens, Basal Bodies, Centrosome, DEAD-box RNA Helicases, Nuclear Pore, Nuclear Pore Complex Proteins, Nucleocytoplasmic Transport Proteins, Protein Binding, RNA Transport, RNA, Messenger, RNA-Binding Proteins, Zebrafish Proteins
Show Abstract · Added April 14, 2017
Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.
© 2017 Jao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
14 MeSH Terms
Decoding P4-ATPase substrate interactions.
Roland BP, Graham TR
(2016) Crit Rev Biochem Mol Biol 51: 513-527
MeSH Terms: Adenosine Triphosphatases, Animals, Cell Membrane, Humans, Models, Molecular, Phospholipid Transfer Proteins, Phospholipids, Protein Domains, Substrate Specificity
Show Abstract · Added April 6, 2017
Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca, a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase.
Roland BP, Graham TR
(2016) Proc Natl Acad Sci U S A 113: E4460-6
MeSH Terms: ATP-Binding Cassette Transporters, Adenosine Triphosphatases, Amino Acid Sequence, Asparagine, Biological Transport, Cell Membrane, Directed Molecular Evolution, Gain of Function Mutation, Mutagenesis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Sphingomyelins, Substrate Specificity
Show Abstract · Added April 6, 2017
Phospholipid flippases in the type IV P-type ATPase (P4-ATPases) family establish membrane asymmetry and play critical roles in vesicular transport, cell polarity, signal transduction, and neurologic development. All characterized P4-ATPases flip glycerophospholipids across the bilayer to the cytosolic leaflet of the membrane, but how these enzymes distinguish glycerophospholipids from sphingolipids is not known. We used a directed evolution approach to examine the molecular mechanisms through which P4-ATPases discriminate substrate backbone. A mutagenesis screen in the yeast Saccharomyces cerevisiae has identified several gain-of-function mutations in the P4-ATPase Dnf1 that facilitate the transport of a novel lipid substrate, sphingomyelin. We found that a highly conserved asparagine (N220) in the first transmembrane segment is a key enforcer of glycerophospholipid selection, and specific substitutions at this site allow transport of sphingomyelin.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Interaction of Gcn4 with target gene chromatin is modulated by proteasome function.
Howard GC, Tansey WP
(2016) Mol Biol Cell 27: 2735-41
MeSH Terms: Adenosine Triphosphatases, Basic-Leucine Zipper Transcription Factors, Cell Cycle Proteins, Chromatin, DNA-Binding Proteins, Molecular Chaperones, Proteasome Endopeptidase Complex, Proteolysis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcription Factors, Transcriptional Activation, Ubiquitin, Ubiquitination, Valosin Containing Protein
Show Abstract · Added March 26, 2019
The ubiquitin-proteasome system (UPS) influences gene transcription in multiple ways. One way in which the UPS affects transcription centers on transcriptional activators, the function of which can be stimulated by components of the UPS that also trigger their destruction. Activation of transcription by the yeast activator Gcn4, for example, is attenuated by mutations in the ubiquitin ligase that mediates Gcn4 ubiquitylation or by inhibition of the proteasome, leading to the idea that ubiquitin-mediated proteolysis of Gcn4 is required for its activity. Here we probe the steps in Gcn4 activity that are perturbed by disruption of the UPS. We show that the ubiquitylation machinery and the proteasome control different steps in Gcn4 function and that proteasome activity is required for the ability of Gcn4 to bind to its target genes in the context of chromatin. Curiously, the effect of proteasome inhibition on Gcn4 activity is suppressed by mutations in the ubiquitin-selective chaperone Cdc48, revealing that proteolysis per se is not required for Gcn4 activity. Our data highlight the role of Cdc48 in controlling promoter occupancy by Gcn4 and support a model in which ubiquitylation of activators-not their destruction-is important for function.
© 2016 Howard and Tansey. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
MeSH Terms
The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
Takar M, Wu Y, Graham TR
(2016) J Biol Chem 291: 15727-39
MeSH Terms: Adenosine Triphosphatases, Bacteriocins, Cell Membrane, Depsipeptides, Membrane Transport Proteins, Peptides, Phosphatidylethanolamines, Phosphatidylserines, Phospholipid Transfer Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Show Abstract · Added April 6, 2017
Eukaryotic organisms typically express multiple type IV P-type ATPases (P4-ATPases), which establish plasma membrane asymmetry by flipping specific phospholipids from the exofacial to the cytosolic leaflet. Saccharomyces cerevisiae, for example, expresses five P4-ATPases, including Neo1, Drs2, Dnf1, Dnf2, and Dnf3. Neo1 is thought to be a phospholipid flippase, although there is currently no experimental evidence that Neo1 catalyzes this activity or helps establish membrane asymmetry. Here, we use temperature-conditional alleles (neo1(ts)) to test whether Neo1 deficiency leads to loss of plasma membrane asymmetry. Wild-type (WT) yeast normally restrict most of the phosphatidylserine (PS) and phosphatidylethanolamine (PE) to the inner cytosolic leaflet of the plasma membrane. However, the neo1-1(ts) and neo1-2(ts) mutants display a loss of PS and PE asymmetry at permissive growth temperatures as measured by hypersensitivity to pore-forming toxins that target PS (papuamide A) or PE (duramycin) exposed in the extracellular leaflet. When shifted to a semi-permissive growth temperature, the neo1-1(ts) mutant became extremely hypersensitive to duramycin, although the sensitivity to papuamide A was unchanged, indicating preferential exposure of PE. This loss of asymmetry occurs despite the presence of other flippases that flip PS and/or PE. Even when overexpressed, Drs2 and Dnf1 were unable to correct the loss of asymmetry caused by neo1(ts) However, modest overexpression of Neo1 weakly suppressed loss of membrane asymmetry caused by drs2Δ with a more significant correction of PE asymmetry than PS. These results indicate that Neo1 plays an important role in establishing PS and PE plasma membrane asymmetry in budding yeast.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.
Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR
(2015) Mol Biol Cell 26: 4674-85
MeSH Terms: Adenosine Triphosphatases, Amino Acid Transport Systems, Basic, Calcium-Transporting ATPases, Cell Membrane, Exocytosis, Membrane Proteins, Mutation, Phosphatidylserines, Protein Transport, Proton-Translocating ATPases, Receptors, Steroid, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transport Vesicles, trans-Golgi Network
Show Abstract · Added April 6, 2017
Sorting of plasma membrane proteins into exocytic vesicles at the yeast trans-Golgi network (TGN) is believed to be mediated by their coalescence with specific lipids, but how these membrane-remodeling events are regulated is poorly understood. Here we show that the ATP-dependent phospholipid flippase Drs2 is required for efficient segregation of cargo into exocytic vesicles. The plasma membrane proteins Pma1 and Can1 are missorted from the TGN to the vacuole in drs2∆ cells. We also used a combination of flippase mutants that either gain or lose the ability to flip phosphatidylserine (PS) to determine that PS flip by Drs2 is its critical function in this sorting event. The primary role of PS flip at the TGN appears to be to control the oxysterol-binding protein homologue Kes1/Osh4 and regulate ergosterol subcellular distribution. Deletion of KES1 suppresses plasma membrane-missorting defects and the accumulation of intracellular ergosterol in drs2 mutants. We propose that PS flip is part of a homeostatic mechanism that controls sterol loading and lateral segregation of protein and lipid domains at the TGN.
© 2015 Hankins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
15 MeSH Terms
Arrestins: Critical Players in Trafficking of Many GPCRs.
Gurevich VV, Gurevich EV
(2015) Prog Mol Biol Transl Sci 132: 1-14
MeSH Terms: Adenosine Triphosphatases, Animals, Arrestins, Binding Sites, Clathrin, Endocytosis, Fatty Acid-Binding Proteins, Humans, Models, Biological, Phosphorylation, Protein Binding, Protein Transport, Receptors, G-Protein-Coupled, Signal Transduction, Ubiquitin
Show Abstract · Added February 3, 2016
Arrestins specifically bind active phosphorylated G protein-coupled receptors (GPCRs). Receptor binding induces the release of the arrestin C-tail, which in non-visual arrestins contains high-affinity binding sites for clathrin and its adaptor AP2. Thus, serving as a physical link between the receptor and key components of the internalization machinery of the coated pit is the best-characterized function of non-visual arrestins in GPCR trafficking. However, arrestins also regulate GPCR trafficking less directly by orchestrating their ubiquitination and deubiquitination. Several reports suggest that arrestins play additional roles in receptor trafficking. Non-visual arrestins appear to be required for the recycling of internalized GPCRs, and the mechanisms of their function in this case remain to be elucidated. Moreover, visual and non-visual arrestins were shown to directly bind N-ethylmaleimide-sensitive factor, an important ATPase involved in vesicle trafficking, but neither molecular details nor the biological role of these interactions is clear. Considering how many different proteins arrestins appear to bind, we can confidently expect the elucidation of additional trafficking-related functions of these versatile signaling adaptors.
© 2015 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis.
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K
(2014) J Cell Biol 207: 189-99
MeSH Terms: Adenosine Triphosphatases, Centrosome, Chromatin, DNA-Binding Proteins, Hydro-Lyases, Kinetochores, Microtubule-Associated Proteins, Mitosis, Multiprotein Complexes, RNA, Transfer, Ribonucleoproteins, Small Nuclear, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Spindle Apparatus
Show Abstract · Added January 25, 2016
Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
© 2014 Snider et al.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Fragment-based screening of the bromodomain of ATAD2.
Harner MJ, Chauder BA, Phan J, Fesik SW
(2014) J Med Chem 57: 9687-92
MeSH Terms: ATPases Associated with Diverse Cellular Activities, Adenosine Triphosphatases, Antineoplastic Agents, Binding Sites, Chemistry, Pharmaceutical, Crystallography, X-Ray, DNA-Binding Proteins, Humans, Kinetics, Ligands, Magnetic Resonance Spectroscopy, Molecular Conformation, Neoplasms, Protein Structure, Tertiary
Show Abstract · Added February 12, 2015
Cellular and genetic evidence suggest that inhibition of ATAD2 could be a useful strategy to treat several types of cancer. To discover small-molecule inhibitors of the bromodomain of ATAD2, we used a fragment-based approach. Fragment hits were identified using NMR spectroscopy, and ATAD2 was crystallized with three of the hits identified in the fragment screen.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.
Hankins HM, Baldridge RD, Xu P, Graham TR
(2015) Traffic 16: 35-47
MeSH Terms: Adenosine Triphosphatases, Animals, Biological Transport, Cell Membrane, Endoplasmic Reticulum, Humans, Phosphatidylserines, Phospholipids
Show Abstract · Added January 20, 2015
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non-vesicular routes, with members of the oxysterol-binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4-ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS-specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
8 MeSH Terms