, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 21

Publication Record

Connections

APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.
Saito-Diaz K, Benchabane H, Tiwari A, Tian A, Li B, Thompson JJ, Hyde AS, Sawyer LM, Jodoin JN, Santos E, Lee LA, Coffey RJ, Beauchamp RD, Williams CS, Kenworthy AK, Robbins DJ, Ahmed Y, Lee E
(2018) Dev Cell 44: 566-581.e8
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Cells, Cultured, Clathrin, Drosophila melanogaster, Endocytosis, Female, Humans, Infant, Ligands, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Wnt Proteins, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added March 14, 2018
Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
4 Members
0 Resources
18 MeSH Terms
Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells.
Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, Tam AJ, McAllister F, Fan H, Wu X, Ganguly S, Lebid A, Metz P, Van Meerbeke SW, Huso DL, Wick EC, Pardoll DM, Wan F, Wu S, Sears CL, Housseau F
(2018) Cell Host Microbe 23: 203-214.e5
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Bacterial Toxins, Bacteroides fragilis, Carcinogenesis, Cell Line, Tumor, Colon, Colorectal Neoplasms, Enzyme Activation, Epithelial Cells, Female, Gene Deletion, HT29 Cells, Humans, Inflammation, Interleukin-17, Male, Metalloendopeptidases, Mice, Mice, Inbred C57BL, Mice, Knockout, Myeloid Cells, Receptors, Interleukin-17, Receptors, Interleukin-8B, STAT3 Transcription Factor, Transcription Factor RelA
Show Abstract · Added March 20, 2018
Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using Apc mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
26 MeSH Terms
p120-Catenin is an obligate haploinsufficient tumor suppressor in intestinal neoplasia.
Short SP, Kondo J, Smalley-Freed WG, Takeda H, Dohn MR, Powell AE, Carnahan RH, Washington MK, Tripathi M, Payne DM, Jenkins NA, Copeland NG, Coffey RJ, Reynolds AB
(2017) J Clin Invest 127: 4462-4476
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Catenins, Haploinsufficiency, Intestinal Neoplasms, Mice, Mice, Knockout, rho-Associated Kinases
Show Abstract · Added March 14, 2018
p120-Catenin (p120) functions as a tumor suppressor in intestinal cancer, but the mechanism is unclear. Here, using conditional p120 knockout in Apc-sensitized mouse models of intestinal cancer, we have identified p120 as an "obligatory" haploinsufficient tumor suppressor. Whereas monoallelic loss of p120 was associated with a significant increase in tumor multiplicity, loss of both alleles was never observed in tumors from these mice. Moreover, forced ablation of the second allele did not further enhance tumorigenesis, but instead induced synthetic lethality in combination with Apc loss of heterozygosity. In tumor-derived organoid cultures, elimination of both p120 alleles resulted in caspase-3-dependent apoptosis that was blocked by inhibition of Rho kinase (ROCK). With ROCK inhibition, however, p120-ablated organoids exhibited a branching phenotype and a substantial increase in cell proliferation. Access to data from Sleeping Beauty mutagenesis screens afforded an opportunity to directly assess the tumorigenic impact of p120 haploinsufficiency relative to other candidate drivers. Remarkably, p120 ranked third among the 919 drivers identified. Cofactors α-catenin and epithelial cadherin (E-cadherin) were also among the highest scoring candidates, indicating a mechanism at the level of the intact complex that may play an important role at very early stages of of intestinal tumorigenesis while simultaneously restricting outright loss via synthetic lethality.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase.
Wang Z, Tacchelly-Benites O, Yang E, Thorne CA, Nojima H, Lee E, Ahmed Y
(2016) Genetics 203: 269-81
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Axin Protein, Drosophila, Genotype, Mitosis, Protein Interaction Domains and Motifs, Protein Stability, Tankyrases, Wnt Proteins, Wnt Signaling Pathway, Xenopus
Show Abstract · Added February 13, 2017
Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein "destruction complex," assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.
Copyright © 2016 by the Genetics Society of America.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia.
Valkenburg KC, Yu X, De Marzo AM, Spiering TJ, Matusik RJ, Williams BO
(2014) Prostate 74: 1506-20
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Castration, Enzyme-Linked Immunosorbent Assay, Epithelial Cells, Immunohistochemistry, Male, Mice, Prostate, Prostatic Intraepithelial Neoplasia, Prostatic Neoplasms, Reverse Transcriptase Polymerase Chain Reaction, Tamoxifen, Wnt Proteins, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added January 20, 2015
BACKGROUND - Wnt/β-catenin signaling is important for prostate development and cancer in humans. Activation of this pathway in differentiated luminal cells of mice induces high-grade prostate intraepithelial neoplasia (HGPIN). Though the cell of origin of prostate cancer has yet to be conclusively identified, a castration-resistant Nkx3.1-expressing cell (CARN) may act as a cell of origin for prostate cancer.
METHODS - To activate Wnt/β-catenin signaling in CARNs, we crossed mice carrying tamoxifen-inducible Nkx3.1-driven Cre to mice containing loxP sites in order to either conditionally knock out adenomatous polyposis coli (Apc) or constitutively activate β-catenin directly. We then castrated and hormonally regenerated these mice to target the CARN population.
RESULTS - Loss of Apc in hormonally normal mice induced HGPIN; however, after one or more rounds of castration and hormonal regeneration, Apc-null CARNs disappeared. Alternatively, when β-catenin was constitutively activated under the same conditions, HGPIN was apparent.
CONCLUSION - Activation of Wnt/β-catenin signaling via Apc deletion is sufficient to produce HGPIN in hormonally normal mice. Loss of Apc may destabilize the CARN population under regeneration conditions. When β-catenin is constitutively activated, HGPIN occurs in hormonally regenerated mice. A second genetic hit is likely required to cause progression to carcinoma and metastasis.
© 2014 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
16 MeSH Terms
Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis.
Pope JL, Ahmad R, Bhat AA, Washington MK, Singh AB, Dhawan P
(2014) Mol Cancer 13: 167
MeSH Terms: Adenomatous Polyposis Coli, Adenomatous Polyposis Coli Protein, Animals, Cell Transformation, Neoplastic, Claudin-1, Colonic Neoplasms, Epithelial Cells, Gene Expression Regulation, Neoplastic, Interleukin-23 Subunit p19, Intestinal Mucosa, Intestines, Mice, Mucin-2
Show Abstract · Added December 8, 2014
BACKGROUND - The tight junction protein Claudin-1, a claudin family member, has been implicated in several gastro-intestinal pathologies including inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this regard, we have demonstrated that claudin-1 expression in colon cancer cells potentiates their tumorigenic ability while in vivo expression of claudin-1 in the intestinal epithelial cells (IECs) promotes Notch-activation, inhibits goblet cell differentiation and renders susceptibility to mucosal inflammation. Notably, a key role of inflammation in colon cancer progression is being appreciated. Therefore, we examined whether inflammation plays an important role in claudin-1-dependent upregulation of colon carcinogenesis.
METHODS - APCmin mice were crossed with Villin-claudin-1 transgenic mice to generate APC-Cldn1 mice. H&E stained colon tissues were assessed for tumor number, size and histological grade. Additionally, microarray and qPCR analyses of colonic tumors were performed to assess molecular changes due to claudin-1 expression. APC-Cldn1 and APCmin controls were assessed for colonic permeability via rectal administration of FITC-dextran, and bacterial translocation via qPCR analysis of 16S rDNA.
RESULTS - Claudin-1 overexpression in APCmin mice significantly increased (~4-fold) colonic tumor growth and size, and decreased survival. Furthermore, transcriptome analysis supported upregulated proliferation, and increased Wnt and Notch-signaling in APC-Cldn1 mice. APC-Cldn1 mice also demonstrated inhibition of mucosal defense genes while expression of pro-inflammatory genes was sharply upregulated, especially the IL-23/IL-17 signaling. We predict that increased Notch/Wnt-signaling underlie the early onset of adenoma formation in APC-Cldn1 mice. An increase in mucosal permeability due to the adenomas and the inherent barrier defect in these mice further facilitate bacterial translocation into the mucosa to induce inflammation, which in turn promote the tumorigenesis.
CONCLUSION - Taken together, these results confirm the role of claudin-1 as a promoter of colon tumorigenesis and further identify the role of the dysregulated antigen-tumor interaction and inflammation in claudin-1-dependent upregulation of colon tumorigenesis.
1 Communities
1 Members
0 Resources
13 MeSH Terms
The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules.
Yasuda K, Zhang H, Loiselle D, Haystead T, Macara IG, Mili S
(2013) J Cell Biol 203: 737-46
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Cytoplasmic Granules, Mice, NIH 3T3 Cells, Protein Biosynthesis, RNA, Messenger, RNA-Binding Protein FUS, Ribonucleoproteins
Show Abstract · Added March 20, 2014
RNA localization pathways direct numerous mRNAs to distinct subcellular regions and affect many physiological processes. In one such pathway the tumor-suppressor protein adenomatous polyposis coli (APC) targets RNAs to cell protrusions, forming APC-containing ribonucleoprotein complexes (APC-RNPs). Here, we show that APC-RNPs associate with the RNA-binding protein Fus/TLS (fused in sarcoma/translocated in liposarcoma). Fus is not required for APC-RNP localization but is required for efficient translation of associated transcripts. Labeling of newly synthesized proteins revealed that Fus promotes translation preferentially within protrusions. Mutations in Fus cause amyotrophic lateral sclerosis (ALS) and the mutant protein forms inclusions that appear to correspond to stress granules. We show that overexpression or mutation of Fus results in formation of granules, which preferentially recruit APC-RNPs. Remarkably, these granules are not translationally silent. Instead, APC-RNP transcripts are translated within cytoplasmic Fus granules. These results unexpectedly show that translation can occur within stress-like granules. Importantly, they identify a new local function for cytoplasmic Fus with implications for ALS pathology.
0 Communities
1 Members
0 Resources
9 MeSH Terms
PIK3CA and APC mutations are synergistic in the development of intestinal cancers.
Deming DA, Leystra AA, Nettekoven L, Sievers C, Miller D, Middlebrooks M, Clipson L, Albrecht D, Bacher J, Washington MK, Weichert J, Halberg RB
(2014) Oncogene 33: 2245-54
MeSH Terms: Adenocarcinoma, Adenomatous Polyposis Coli Protein, Animals, Cell Nucleus, Colorectal Neoplasms, Cyclin D1, Disease Models, Animal, Epistasis, Genetic, Female, Gene Expression, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Microsatellite Instability, Phosphatidylinositol 3-Kinases, Tumor Burden, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added April 12, 2016
Human colorectal cancers are known to possess multiple mutations, though how these mutations interact in tumor development and progression has not been fully investigated. We have previously described the FCPIK3ca* murine colon cancer model, which expresses a constitutively activated phosphoinositide-3 kinase (PI3K) in the intestinal epithelium. The expression of this dominantly active form of PI3K results in hyperplasia and invasive mucinous adenocarcinomas. These cancers form via a non-canonical mechanism of tumor initiation that is mediated through activation of PI3K and not through aberrations in WNT signaling. Since the Adenomatous Polyposis Coli (APC) gene is mutated in the majority of human colon cancers and often occurs simultaneously with PIK3CA mutations, we sought to better understand the interaction between APC and PIK3CA mutations in the mammalian intestine. In this study, we have generated mice in which the expression of a constitutively active PI3K and the loss of APC occur simultaneously in the distal small intestine and colon. Here, we demonstrate that expression of a dominant active PI3K synergizes with loss of APC activity resulting in a dramatic change in tumor multiplicity, size, morphology and invasiveness. Activation of the PI3K pathway is not able to directly activate WNT signaling through the nuclear localization of CTNNB1 (β-catenin) in the absence of aberrant WNT signaling. Alterations at the transcriptional level, including increased CCND1, may be the etiology of synergy between these activated pathways.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor.
Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ
(2012) Cell 149: 146-58
MeSH Terms: Adenoma, Adenomatous Polyposis Coli Protein, Animals, Colon, ErbB Receptors, Gene Expression Profiling, Genes, Tumor Suppressor, Humans, Intestinal Neoplasms, Intestine, Small, Membrane Glycoproteins, Mice, Nerve Tissue Proteins, Receptors, G-Protein-Coupled, Signal Transduction, Stem Cells
Show Abstract · Added July 19, 2013
Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.
Copyright © 2012 Elsevier Inc. All rights reserved.
3 Communities
5 Members
0 Resources
16 MeSH Terms
Topoisomerase IIalpha binding domains of adenomatous polyposis coli influence cell cycle progression and aneuploidy.
Wang Y, Coffey RJ, Osheroff N, Neufeld KL
(2010) PLoS One 5: e9994
MeSH Terms: Adenomatous Polyposis Coli, Adenomatous Polyposis Coli Protein, Aneuploidy, Antigens, Neoplasm, Binding Sites, Cell Cycle, Cell Line, Tumor, Codon, Nonsense, DNA Topoisomerases, Type II, DNA-Binding Proteins, Epithelial Cells, G2 Phase, Humans, Repetitive Sequences, Nucleic Acid, beta Catenin
Show Abstract · Added August 12, 2010
BACKGROUND - Truncating mutations in the tumor suppressor gene APC (Adenomatous Polyposis Coli) are thought to initiate the majority of colorectal cancers. The 15- and 20-amino acid repeat regions of APC bind beta-catenin and have been widely studied for their role in the negative regulation of canonical Wnt signaling. However, functions of APC in other important cellular processes, such as cell cycle control or aneuploidy, are only beginning to be studied. Our previous investigation implicated the 15-amino acid repeat region of APC (M2-APC) in the regulation of the G2/M cell cycle transition through interaction with topoisomerase IIalpha (topo IIalpha).
METHODOLOGY/PRINCIPAL FINDINGS - We now demonstrate that the 20-amino acid repeat region of APC (M3-APC) also interacts with topo IIalpha in colonic epithelial cells. Expression of M3-APC in cells with full-length endogenous APC causes cell accumulation in G2. However, cells with a mutated topo IIalpha isoform and lacking topo IIbeta did not arrest, suggesting that the cellular consequence of M2- or M3-APC expression depends on functional topoisomerase II. Both purified recombinant M2- and M3-APC significantly enhanced the activity of topo IIalpha. Of note, although M3-APC can bind beta-catenin, the G2 arrest did not correlate with beta-catenin expression or activity, similar to what was seen with M2-APC. More importantly, expression of either M2- or M3-APC also led to increased aneuploidy in cells with full-length endogenous APC but not in cells with truncated endogenous APC that includes the M2-APC region.
CONCLUSIONS/SIGNIFICANCE - Together, our data establish that the 20-amino acid repeat region of APC interacts with topo IIalpha to enhance its activity in vitro, and leads to G2 cell cycle accumulation and aneuploidy when expressed in cells containing full-length APC. These findings provide an additional explanation for the aneuploidy associated with many colon cancers that possess truncated APC.
1 Communities
1 Members
0 Resources
15 MeSH Terms