Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 100

Publication Record


Dynamics of drug response informs rational combination regimens.
Paudel BB, Quaranta V
(2019) Sci Signal 12:
MeSH Terms: Adaptation, Physiological, Drug Tolerance, Humans, Neoplasms, Signal Transduction
Show Abstract · Added October 9, 2019
Metabolic plasticity in cancer has been linked to the development of drug-tolerant populations. In this issue of , Goldman integrate metabolic plasticity with phenotypic state transitions to examine how this reprogramming can be therapeutically exploited.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
2 Members
0 Resources
5 MeSH Terms
V1 microcircuit dynamics: altered signal propagation suggests intracortical origins for adaptation in response to visual repetition.
Westerberg JA, Cox MA, Dougherty K, Maier A
(2019) J Neurophysiol 121: 1938-1952
MeSH Terms: Adaptation, Physiological, Animals, Evoked Potentials, Visual, Female, Geniculate Bodies, Macaca radiata, Male, Neurons, Visual Cortex
Show Abstract · Added August 27, 2020
Repetitive visual stimulation profoundly changes sensory processing in the primary visual cortex (V1). We show how the associated adaptive changes are linked to an altered flow of synaptic activation across the V1 laminar microcircuit. Using repeated visual stimulation, we recorded layer-specific responses in V1 of two fixating monkeys. We found that repetition-related spiking suppression was most pronounced outside granular V1 layers that receive the main retinogeniculate input. This repetition-related response suppression was robust to alternating stimuli between the eyes, in line with the notion that repetition-related adaptation is predominantly of cortical origin. Most importantly, current source density (CSD) analysis, which provides an estimate of local net depolarization, revealed that synaptic processing during repeated stimulation was most profoundly affected within supragranular layers, which harbor the bulk of cortico-cortical connections. Direct comparison of the temporal evolution of laminar CSD and spiking activity showed that stimulus repetition first affected supragranular synaptic currents, which translated into a reduction of stimulus-evoked spiking across layers. Together, these results suggest that repetition induces an altered state of intracortical processing that underpins visual adaptation. Our survival depends on our brains rapidly adapting to ever changing environments. A well-studied form of adaptation occurs whenever we encounter the same or similar stimuli repeatedly. We show that this repetition-related adaptation is supported by systematic changes in the flow of sensory activation across the laminar cortical microcircuitry of primary visual cortex. These results demonstrate how adaptation impacts neuronal interactions across cortical circuits.
0 Communities
1 Members
0 Resources
MeSH Terms
Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning.
Bergstrom HC, Lipkin AM, Lieberman AG, Pinard CR, Gunduz-Cinar O, Brockway ET, Taylor WW, Nonaka M, Bukalo O, Wills TA, Rubio FJ, Li X, Pickens CL, Winder DG, Holmes A
(2018) Cell Rep 23: 2264-2272
MeSH Terms: Adaptation, Physiological, Animals, Choice Behavior, Corpus Striatum, Cytoskeletal Proteins, Discrimination Learning, Light, Male, Mice, Inbred C57BL, Nerve Tissue Proteins
Show Abstract · Added March 26, 2019
In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M
(2018) Am J Physiol Endocrinol Metab 314: E308-E321
MeSH Terms: Adaptation, Physiological, Animals, Animals, Newborn, Cell Differentiation, Cells, Cultured, Diet, High-Fat, Gene Expression Regulation, Developmental, Glucose, Hepatocyte Nuclear Factor 6, Homeodomain Proteins, Insulin-Secreting Cells, Islets of Langerhans, Male, Mice, Mice, Transgenic, Multipotent Stem Cells, Organogenesis, Trans-Activators
Show Abstract · Added April 15, 2019
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
0 Communities
1 Members
0 Resources
MeSH Terms
AMPK in skeletal muscle function and metabolism.
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L
(2018) FASEB J 32: 1741-1777
MeSH Terms: Adaptation, Physiological, Animals, Energy Metabolism, Exercise, Humans, Muscle, Skeletal, Protein Kinases
Show Abstract · Added May 16, 2019
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism ( e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.-Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
0 Communities
1 Members
0 Resources
MeSH Terms
Mathematical models of cell phenotype regulation and reprogramming: Make cancer cells sensitive again!
Wooten DJ, Quaranta V
(2017) Biochim Biophys Acta Rev Cancer 1867: 167-175
MeSH Terms: Adaptation, Physiological, Animals, Antineoplastic Agents, Biomarkers, Tumor, Cell Transformation, Neoplastic, Cellular Reprogramming, Drug Resistance, Neoplasm, Epigenesis, Genetic, Evolution, Molecular, Gene Expression Regulation, Neoplastic, Genetic Fitness, Genetic Predisposition to Disease, Heredity, Humans, Models, Genetic, Mutation, Neoplasms, Pedigree, Phenotype, Signal Transduction, Time Factors
Show Abstract · Added May 5, 2017
A cell's phenotype is the observable actualization of complex interactions between its genome, epigenome, and local environment. While traditional views in cancer have held that cellular and tumor phenotypes are largely functions of genomic instability, increasing attention has recently been given to epigenetic and microenvironmental influences. Such non-genetic factors allow cancer cells to experience intrinsic diversity and plasticity, and at the tumor level can result in phenotypic heterogeneity and treatment evasion. In 2006, Takahashi and Yamanaka exploited the epigenome's plasticity by "reprogramming" differentiated cells into a pluripotent state by inducing expression of a cocktail of four transcription factors. Recent advances in cancer biology have shown not only that cellular reprogramming is possible for malignant cells, but it may provide a foundation for future therapies. Nevertheless, cell reprogramming experiments are frequently plagued by low efficiency, activation of aberrant transcriptional programs, instability, and often rely on expertise gathered from systems which may not translate directly to cancer. Here, we review a theoretical framework tracing back to Waddington's epigenetic landscape which may be used to derive quantitative and qualitative understanding of cellular reprogramming. Implications for tumor heterogeneity, evolution and adaptation are discussed in the context of designing new treatments to re-sensitize recalcitrant tumors. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Copyright © 2017. Published by Elsevier B.V.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Activated Oncogenic Pathway Modifies Iron Network in Breast Epithelial Cells: A Dynamic Modeling Perspective.
Chifman J, Arat S, Deng Z, Lemler E, Pino JC, Harris LA, Kochen MA, Lopez CF, Akman SA, Torti FM, Torti SV, Laubenbacher R
(2017) PLoS Comput Biol 13: e1005352
MeSH Terms: Adaptation, Physiological, Animals, Breast, Cell Transformation, Neoplastic, Computer Simulation, Epithelial Cells, Female, Humans, Iron, Iron Regulatory Protein 2, Models, Biological, Signal Transduction, Tumor Cells, Cultured, ras Proteins
Show Abstract · Added April 19, 2017
Dysregulation of iron metabolism in cancer is well documented and it has been suggested that there is interdependence between excess iron and increased cancer incidence and progression. In an effort to better understand the linkages between iron metabolism and breast cancer, a predictive mathematical model of an expanded iron homeostasis pathway was constructed that includes species involved in iron utilization, oxidative stress response and oncogenic pathways. The model leads to three predictions. The first is that overexpression of iron regulatory protein 2 (IRP2) recapitulates many aspects of the alterations in free iron and iron-related proteins in cancer cells without affecting the oxidative stress response or the oncogenic pathways included in the model. This prediction was validated by experimentation. The second prediction is that iron-related proteins are dramatically affected by mitochondrial ferritin overexpression. This prediction was validated by results in the pertinent literature not used for model construction. The third prediction is that oncogenic Ras pathways contribute to altered iron homeostasis in cancer cells. This prediction was validated by a combination of simulation experiments of Ras overexpression and catalase knockout in conjunction with the literature. The model successfully captures key aspects of iron metabolism in breast cancer cells and provides a framework upon which more detailed models can be built.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Helicobacter pylori adaptation in vivo in response to a high-salt diet.
Loh JT, Gaddy JA, Algood HM, Gaudieri S, Mallal S, Cover TL
(2015) Infect Immun 83: 4871-83
MeSH Terms: Adaptation, Physiological, Animals, Bacterial Proteins, Base Sequence, Disease Models, Animal, Gastric Mucosa, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genome, Bacterial, Gerbillinae, Helicobacter Infections, Helicobacter pylori, Host-Pathogen Interactions, Humans, Iron, Molecular Sequence Data, Mutation, Oxidative Stress, Proteome, Repressor Proteins, Sodium Chloride, Dietary
Show Abstract · Added October 8, 2015
Helicobacter pylori exhibits a high level of intraspecies genetic diversity. In this study, we investigated whether the diversification of H. pylori is influenced by the composition of the diet. Specifically, we investigated the effect of a high-salt diet (a known risk factor for gastric adenocarcinoma) on H. pylori diversification within a host. We analyzed H. pylori strains isolated from Mongolian gerbils fed either a high-salt diet or a regular diet for 4 months by proteomic and whole-genome sequencing methods. Compared to the input strain and output strains from animals fed a regular diet, the output strains from animals fed a high-salt diet produced higher levels of proteins involved in iron acquisition and oxidative-stress resistance. Several of these changes were attributable to a nonsynonymous mutation in fur (fur-R88H). Further experiments indicated that this mutation conferred increased resistance to high-salt conditions and oxidative stress. We propose a model in which a high-salt diet leads to high levels of gastric inflammation and associated oxidative stress in H. pylori-infected animals and that these conditions, along with the high intraluminal concentrations of sodium chloride, lead to selection of H. pylori strains that are most fit for growth in this environment.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
3 Members
0 Resources
21 MeSH Terms
Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation.
Ma F, Jazmin LJ, Young JD, Allen DK
(2014) Proc Natl Acad Sci U S A 111: 16967-72
MeSH Terms: Adaptation, Physiological, Arabidopsis, Carbon Isotopes, Glucose, Light, Photosynthesis, Plant Leaves
Show Abstract · Added January 23, 2015
Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient (13)C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. We performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with (13)CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m(-2)s(-1) light were compared with plants acclimated for 9 d at an irradiance of 500 µmol⋅m(-2)⋅s(-1). Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights the potential of (13)C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Identification of small proline-rich repeat protein 3 as a novel atheroprotective factor that promotes adaptive Akt signaling in vascular smooth muscle cells.
Segedy AK, Pyle AL, Li B, Zhang Y, Babaev VR, Jat P, Fazio S, Atkinson JB, Linton MF, Young PP
(2014) Arterioscler Thromb Vasc Biol 34: 2527-36
MeSH Terms: Adaptation, Physiological, Animals, Apolipoproteins E, Apoptosis, Atherosclerosis, Cell Proliferation, Cell Survival, Cornified Envelope Proline-Rich Proteins, Disease Progression, Endothelial Cells, Female, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Myocytes, Smooth Muscle, Phosphorylation, Plaque, Atherosclerotic, Proto-Oncogene Proteins c-akt, Signal Transduction
Show Abstract · Added February 12, 2015
OBJECTIVE - Atherosclerosis is the primary driver of cardiovascular disease, the leading cause of death worldwide. Identification of naturally occurring atheroprotective genes has become a major goal for the development of interventions that will limit atheroma progression and associated adverse events. To this end, we have identified small proline-rich repeat protein (SPRR3) as selectively upregulated in vascular smooth muscle cells (VSMCs) of atheroma-bearing arterial tissue versus healthy arterial tissue. In this study, we sought to determine the role of SPRR3 in atheroma pathophysiology.
APPROACH AND RESULTS - We found that atheroprone apolipoprotein E-null mice lacking SPRR3 developed significantly greater atheroma burden. To determine the cellular driver(s) of this increase, we evaluated SPRR3-dependent changes in bone marrow-derived cells, endothelial cells, and VSMCs. Bone marrow transplant of SPRR3-expressing cells into SPRR3(-/-)apolipoprotein E-deficient recipients failed to rescue atheroma burden. Similarly, endothelial cells did not exhibit a response to SPRR3 loss. However, atheromas from SPRR3-deficient mice exhibited increased TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive VSMCs compared with control. Cell death in SPRR3-deficient VSMCs was significantly increased in vitro. Conversely, SPRR3-overexpressing VSMCs exhibited reduced apoptosis compared with control. We also observed a PI3K (phosphatidylinositol 3-kinase)/Akt-dependent positive association between SPRR3 expression and levels of active Akt in VSMCs. The survival advantage seen in SPRR3-overexpressing VSMCs was abrogated after the addition of a PI3K/Akt pathway inhibitor.
CONCLUSIONS - These results indicate that SPRR3 protects the lesion from VSMC loss by promoting survival signaling in plaque VSMCs, thereby significantly decreasing atherosclerosis progression. As the first identified atheroma-specific VSMC prosurvival factor, SPRR3 represents a potential target for lesion-specific modulation of VSMC survival.
© 2014 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
21 MeSH Terms