Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 207

Publication Record

Connections

The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus.
Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, Zhang MZ, Hudson BG, Basak T, Vanacore RM, Zent R, Pozzi A
(2019) J Am Soc Nephrol 30: 1605-1624
MeSH Terms: Actins, Acute Kidney Injury, Animals, Biological Transport, Cell Line, Cell Nucleus, Chromatin, Collagen Type I, Collagen Type IV, Discoidin Domain Receptor 1, Humans, Kidney Tubules, Proximal, Male, Mice, Myosin Heavy Chains, Nuclear Localization Signals, Retinoblastoma-Binding Protein 4, SEC Translocation Channels, Transcription, Genetic
Show Abstract · Added May 10, 2020
BACKGROUND - The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors.
METHODS - To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation.
RESULTS - We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and -actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis.
CONCLUSIONS - These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.
Copyright © 2019 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing.
Saraswati S, Marrow SMW, Watch LA, Young PP
(2019) Nat Commun 10: 3027
MeSH Terms: Actins, Animals, Bone Marrow Transplantation, Calcium-Binding Proteins, Cell Differentiation, Disease Models, Animal, Fibroblasts, Fibrosis, Green Fluorescent Proteins, Human Umbilical Vein Endothelial Cells, Humans, Mice, Mice, Inbred C57BL, Mice, Transgenic, Myocardial Infarction, Myocardium, Neovascularization, Physiologic, S100 Calcium-Binding Protein A4, Transplantation Chimera, Wound Healing
Show Abstract · Added March 24, 2020
Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis along with physiological repair, making them a difficult therapeutic target. Although activated fibroblasts are phenotypically heterogeneous, they are not recognized as distinct functional entities. Using mice that express GFP under the FSP1 or αSMA promoter, we characterized two non-overlapping fibroblast subtypes from mouse hearts after myocardial infarction. Here, we report the identification of FSP1-GFP cells as a non-pericyte, non-hematopoietic fibroblast subpopulation with a predominant pro-angiogenic role, characterized by in vitro phenotypic/cellular/ultrastructural studies and in vivo granulation tissue formation assays combined with transcriptomics and proteomics. This work identifies a fibroblast subtype that is functionally distinct from the pro-fibrotic αSMA-expressing myofibroblast subtype. Our study has the potential to shift our focus towards viewing fibroblasts as molecularly and functionally heterogeneous and provides a paradigm to approach treatment for organ fibrosis.
0 Communities
1 Members
0 Resources
MeSH Terms
Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response.
Sundararajan L, Smith CJ, Watson JD, Millis BA, Tyska MJ, Miller DM
(2019) PLoS Genet 15: e1008228
MeSH Terms: Actin Cytoskeleton, Actin-Related Protein 2-3 Complex, Actins, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Dendritic Cells, Membrane Proteins, Myosin Heavy Chains, Nerve Tissue Proteins, Netrins, Neurons, Nonmuscle Myosin Type IIB
Show Abstract · Added March 3, 2020
Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.
0 Communities
1 Members
0 Resources
MeSH Terms
Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction.
Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB
(2019) Nephrol Dial Transplant 34: 2042-2050
MeSH Terms: Actins, Animals, Collagen Type I, Connective Tissue Growth Factor, Extracellular Matrix Proteins, Fibroblasts, Fibrosis, Kidney Diseases, Mice, Mice, Knockout, Nerve Tissue Proteins, Serpin E2, Transforming Growth Factor beta, Ureteral Obstruction
Show Abstract · Added March 18, 2020
BACKGROUND - Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1).
METHODS - Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later.
RESULTS - GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor β (TGF-β) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF β and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice.
CONCLUSION - These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.
© The Author(s) 2019. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Chlorocebus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT
(2018) Elife 7:
MeSH Terms: Actin Cytoskeleton, Actins, Cell Line, Cell Line, Tumor, Formins, HeLa Cells, Humans, Microfilament Proteins, Microscopy, Confocal, Molecular Motor Proteins, Muscle Fibers, Skeletal, Myocytes, Cardiac, Myosin Heavy Chains, Nonmuscle Myosin Type IIB, RNA Interference, Sarcomeres, Stress Fibers
Show Abstract · Added March 27, 2019
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
© 2018, Fenix et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Cadherin-11 as a regulator of valve myofibroblast mechanobiology.
Bowler MA, Bersi MR, Ryzhova LM, Jerrell RJ, Parekh A, Merryman WD
(2018) Am J Physiol Heart Circ Physiol 315: H1614-H1626
MeSH Terms: Actins, Animals, Aortic Valve, Cadherins, Cells, Cultured, Focal Adhesions, Interleukin-6, Mechanotransduction, Cellular, Mice, Myofibroblasts, Protein Binding, Tumor Necrosis Factor-alpha
Show Abstract · Added March 18, 2020
Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11, Cdh11, and Cdh11 immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-β and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11, Cdh11, and Cdh11 mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-β overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-β overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.
0 Communities
1 Members
0 Resources
MeSH Terms
Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue.
Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM
(2019) Tissue Eng Part A 25: 416-426
MeSH Terms: Actin Cytoskeleton, Actins, Animals, Blood Vessels, Calcium, Gene Silencing, Heat-Shock Proteins, Humans, Micelles, Muscle Contraction, Muscle, Smooth, Nanoparticles, Nanotechnology, Peptides, Polymerization, RNA, Small Interfering, Rats, Signal Transduction, Static Electricity
Show Abstract · Added April 10, 2019
IMPACT STATEMENT - Subarachnoid hemorrhage (SAH) is associated with vasospasm that is refractory to traditional vasodilators, and inhibition of vasospasm after SAH remains a large unmet clinical need. SAH causes changes in the phosphorylation state of the small heat shock proteins (HSPs), HSP20 and HSP27, in the vasospastic vessels. In this study, the levels of HSP27 and HSP20 were manipulated using nanotechnology to mimic the intracellular phenotype of SAH-induced vasospasm, and the effect of this manipulation was tested on vasomotor responses in intact tissues. This work provides insight into potential therapeutic targets for the development of more effective treatments for SAH induced vasospasm.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Cdk1-dependent phosphoinhibition of a formin-F-BAR interaction opposes cytokinetic contractile ring formation.
Willet AH, Bohnert KA, Gould KL
(2018) Mol Biol Cell 29: 713-721
MeSH Terms: Actin Cytoskeleton, Actins, CDC2 Protein Kinase, Cell Cycle Proteins, Cell Division, Cytokinesis, Cytoskeletal Proteins, GTP-Binding Proteins, Phosphorylation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 14, 2018
In , cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). A single essential formin, Cdc12, localizes to the cell middle upon mitotic onset and nucleates the F-actin of the CR. Cdc12 medial recruitment is mediated in part by its direct binding to the F-BAR scaffold Cdc15. Given that Cdc12 is hyperphosphorylated in M phase, we explored whether Cdc12 phosphoregulation impacts its association with Cdc15 during mitosis. We found that Cdk1, a major mitotic kinase, phosphorylates Cdc12 on six N-terminal residues near the Cdc15-binding site, and phosphorylation on these sites inhibits its interaction with the Cdc15 F-BAR domain. Consistent with this finding, a mutant with all six Cdk1 sites changed to phosphomimetic residues () displays phenotypes similar to , in which the Cdc15-binding motif is disrupted; both show reduced Cdc12 at the CR and delayed CR formation. Together, these results indicate that Cdk1 phosphorylation of formin Cdc12 antagonizes its interaction with Cdc15 and thereby opposes Cdc12's CR localization. These results are consistent with a general role for Cdk1 in inhibiting cytokinesis until chromosome segregation is complete.
© 2018 Willet et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
11 MeSH Terms
Shear stress induces noncanonical autophagy in intestinal epithelial monolayers.
Kim SW, Ehrman J, Ahn MR, Kondo J, Lopez AAM, Oh YS, Kim XH, Crawley SW, Goldenring JR, Tyska MJ, Rericha EC, Lau KS
(2017) Mol Biol Cell 28: 3043-3056
MeSH Terms: Actins, Autophagy, Caco-2 Cells, Cell Culture Techniques, Epithelium, Humans, Intestinal Mucosa, Intestines, Microvilli, Stress, Physiological, Vacuoles
Show Abstract · Added April 3, 2018
Flow of fluids through the gut, such as milk from a neonatal diet, generates a shear stress on the unilaminar epithelium lining the lumen. We report that exposure to physiological levels of fluid shear stress leads to the formation of large vacuoles, containing extracellular contents within polarizing intestinal epithelial cell monolayers. These observations lead to two questions: how can cells lacking primary cilia transduce shear stress, and what molecular pathways support the formation of vacuoles that can exceed 80% of the cell volume? We find that shear forces are sensed by actin-rich microvilli that eventually generate the apical brush border, providing evidence that these structures possess mechanosensing ability. Importantly, we identified the molecular pathway that regulates large vacuole formation downstream from mechanostimulation to involve central components of the autophagy pathway, including ATG5 and LC3, but not Beclin. Together our results establish a novel link between the actin-rich microvilli, the macroscopic transport of fluids across cells, and the noncanonical autophagy pathway in organized epithelial monolayers.
© 2017 Kim et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
3 Members
0 Resources
MeSH Terms