Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 61

Publication Record

Connections

Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT
(2018) Elife 7:
MeSH Terms: Actin Cytoskeleton, Actins, Cell Line, Cell Line, Tumor, HeLa Cells, Humans, Microfilament Proteins, Microscopy, Confocal, Molecular Motor Proteins, Muscle Fibers, Skeletal, Myocytes, Cardiac, Myosin Heavy Chains, Nonmuscle Myosin Type IIB, RNA Interference, Sarcomeres, Stress Fibers
Show Abstract · Added March 27, 2019
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
© 2018, Fenix et al.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue.
Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM
(2019) Tissue Eng Part A 25: 416-426
MeSH Terms: Actin Cytoskeleton, Actins, Animals, Blood Vessels, Calcium, Gene Silencing, Heat-Shock Proteins, Humans, Micelles, Muscle Contraction, Muscle, Smooth, Nanoparticles, Nanotechnology, Peptides, Polymerization, RNA, Small Interfering, Rats, Signal Transduction, Static Electricity
Show Abstract · Added April 10, 2019
IMPACT STATEMENT - Subarachnoid hemorrhage (SAH) is associated with vasospasm that is refractory to traditional vasodilators, and inhibition of vasospasm after SAH remains a large unmet clinical need. SAH causes changes in the phosphorylation state of the small heat shock proteins (HSPs), HSP20 and HSP27, in the vasospastic vessels. In this study, the levels of HSP27 and HSP20 were manipulated using nanotechnology to mimic the intracellular phenotype of SAH-induced vasospasm, and the effect of this manipulation was tested on vasomotor responses in intact tissues. This work provides insight into potential therapeutic targets for the development of more effective treatments for SAH induced vasospasm.
0 Communities
1 Members
0 Resources
19 MeSH Terms
A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching.
Zou W, Dong X, Broederdorf TR, Shen A, Kramer DA, Shi R, Liang X, Miller DM, Xiang YK, Yasuda R, Chen B, Shen K
(2018) Dev Cell 45: 362-375.e3
MeSH Terms: Actin Cytoskeleton, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Cell Membrane, Dendrites, Membrane Proteins, Morphogenesis, Neurogenesis, Sensory Receptor Cells, Signal Transduction
Show Abstract · Added March 26, 2019
Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Cdk1-dependent phosphoinhibition of a formin-F-BAR interaction opposes cytokinetic contractile ring formation.
Willet AH, Bohnert KA, Gould KL
(2018) Mol Biol Cell 29: 713-721
MeSH Terms: Actin Cytoskeleton, Actins, CDC2 Protein Kinase, Cell Cycle Proteins, Cell Division, Cytokinesis, Cytoskeletal Proteins, GTP-Binding Proteins, Phosphorylation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 14, 2018
In , cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). A single essential formin, Cdc12, localizes to the cell middle upon mitotic onset and nucleates the F-actin of the CR. Cdc12 medial recruitment is mediated in part by its direct binding to the F-BAR scaffold Cdc15. Given that Cdc12 is hyperphosphorylated in M phase, we explored whether Cdc12 phosphoregulation impacts its association with Cdc15 during mitosis. We found that Cdk1, a major mitotic kinase, phosphorylates Cdc12 on six N-terminal residues near the Cdc15-binding site, and phosphorylation on these sites inhibits its interaction with the Cdc15 F-BAR domain. Consistent with this finding, a mutant with all six Cdk1 sites changed to phosphomimetic residues () displays phenotypes similar to , in which the Cdc15-binding motif is disrupted; both show reduced Cdc12 at the CR and delayed CR formation. Together, these results indicate that Cdk1 phosphorylation of formin Cdc12 antagonizes its interaction with Cdc15 and thereby opposes Cdc12's CR localization. These results are consistent with a general role for Cdk1 in inhibiting cytokinesis until chromosome segregation is complete.
© 2018 Willet et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
11 MeSH Terms
Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs.
Cleghorn WM, Bulus N, Kook S, Gurevich VV, Zent R, Gurevich EV
(2018) Cell Signal 42: 259-269
MeSH Terms: Actin Cytoskeleton, Animals, Cell Adhesion, Cell Line, Cell Movement, Fibroblasts, Focal Adhesions, Gene Expression Regulation, Mice, Neuropeptides, Receptors, G-Protein-Coupled, Signal Transduction, beta-Arrestin 1, beta-Arrestin 2, cdc42 GTP-Binding Protein, rac1 GTP-Binding Protein, rho GTP-Binding Proteins
Show Abstract · Added March 14, 2018
Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Microtubules regulate brush border formation.
Tonucci FM, Ferretti A, Almada E, Cribb P, Vena R, Hidalgo F, Favre C, Tyska MJ, Kaverina I, Larocca MC
(2018) J Cell Physiol 233: 1468-1480
MeSH Terms: Actin Cytoskeleton, Animals, Cell Polarity, Centromere, Colon, Dogs, Enterocytes, Epithelial Cells, Humans, Kidney, Madin Darby Canine Kidney Cells, Microtubule-Associated Proteins, Microtubules, Microvilli, Nocodazole, Time Factors, Tubulin Modulators
Show Abstract · Added April 10, 2018
Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Impact of cordon-bleu expression on actin cytoskeleton architecture and dynamics.
Grega-Larson NE, Crawley SW, Tyska MJ
(2016) Cytoskeleton (Hoboken) 73: 670-679
MeSH Terms: Actin Cytoskeleton, Animals, Cell Line, Tumor, Gene Expression Regulation, Mice, Microfilament Proteins, Microvilli, Proteins
Show Abstract · Added April 7, 2017
Cordon-bleu (COBL) is a multifunctional WASP-Homology 2 (WH2) domain-containing protein implicated in a wide variety of cellular functions ranging from dendritic arborization in neurons to the assembly of microvilli on the surface of transporting epithelial cells. In vitro biochemical studies suggest that COBL is capable of nucleating and severing actin filaments, among other activities. How the multiple activities of COBL observed in vitro contribute to its function in cells remains unclear. Here, we used live imaging to evaluate the impact of COBL expression on the actin cytoskeleton in cultured cells. We found that COBL induces the formation of dynamic linear actin structures throughout the cytosol. We also found that stabilizing these dynamic structures with the parallel actin-bundling protein espin slows down their turnover and enables the robust formation of self-supported protrusions on the dorsal cell surface. Super-resolution imaging revealed a global remodeling of the actin cytoskeleton in cells expressing these two factors. Taken together, these results provide insight as to how COBL contributes to the assembly of actin-based structures such as epithelial microvilli. © 2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
8 MeSH Terms
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin.
Landino J, Ohi R
(2016) Curr Biol 26: 698-706
MeSH Terms: Actin Cytoskeleton, Actins, Anaphase, Cell Division, Cell Line, Cytokinesis, HeLa Cells, Humans, Microtubules, Myosin Type II
Show Abstract · Added April 18, 2017
The final steps of cell division are tightly coordinated in space and time, but whether mechanisms exist to couple the actin and microtubule (MT) cytoskeletons during anaphase and cytokinesis (C phase) is largely unknown. During anaphase, MTs are incorporated into an anti-parallel array termed the spindle midzone (midzone MTs), whereas F-actin and non-muscle myosin II, together with other factors, organize into the cleavage furrow [1]. Previous studies in somatic cells have shown that midzone MTs become highly stable after furrows have begun ingression [2], indicating that furrow-to-MT communication may occur. Midzone formation is also inhibited in fly spermatocytes that fail to form a cleavage furrow [3] and during monopolar cytokinesis when myosin contractility is blocked by blebbistatin [4]. We show here that midzone MT stabilization is dependent on actomyosin contraction, suggesting that there is active coordination between furrow ingression and microtubule dynamics. Midzone microtubule stabilization also depends on the kinase activity of Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC), uncovering a feedback mechanism that couples furrowing with microtubule dynamics. We further show that the CPC scaffolding protein INCENP (inner centromere protein) binds actin, an interaction that is important for cytokinesis and for midzone MT stabilization following furrow ingression. Stabilization of midzone MTs with low amounts of Taxol rescues cytokinesis in INCENP actin-binding mutant-expressing cells. Collectively, our work demonstrates that the actin and microtubule cytoskeletons are coordinated during cytokinesis and suggests that the CPC is integral for coupling furrow ingression with midzone microtubule stabilization.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis.
McDonald NA, Vander Kooi CW, Ohi MD, Gould KL
(2015) Dev Cell 35: 725-36
MeSH Terms: Actin Cytoskeleton, Carrier Proteins, Cell Cycle Proteins, Cell Membrane, Cytokinesis, Cytoskeletal Proteins, Humans, Protein Multimerization, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added February 3, 2016
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending.
Copyright © 2015 Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
10 MeSH Terms
Vinculin controls talin engagement with the actomyosin machinery.
Atherton P, Stutchbury B, Wang DY, Jethwa D, Tsang R, Meiler-Rodriguez E, Wang P, Bate N, Zent R, Barsukov IL, Goult BT, Critchley DR, Ballestrem C
(2015) Nat Commun 6: 10038
MeSH Terms: Actin Cytoskeleton, Actins, Actomyosin, Animals, Cell Polarity, Focal Adhesions, Mice, NIH 3T3 Cells, Protein Binding, Protein Structure, Tertiary, Talin, Vinculin
Show Abstract · Added February 4, 2016
The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs.
1 Communities
1 Members
0 Resources
12 MeSH Terms