Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 19

Publication Record

Connections

Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.
Fernando LP, Lewis JS, Evans BC, Duvall CL, Keselowsky BG
(2018) J Biomed Mater Res A 106: 1022-1033
MeSH Terms: Acrylic Resins, Animals, CHO Cells, Cell Death, Cell Membrane, Cricetinae, Cricetulus, Cytosol, Dendritic Cells, Endocytosis, Endosomes, Humans, Hydrogen-Ion Concentration, Mice, Inbred C57BL, Microspheres, Particle Size, Polylactic Acid-Polyglycolic Acid Copolymer, Proton Magnetic Resonance Spectroscopy
Show Abstract · Added March 14, 2018
Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion.
Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM
(2017) Anal Chem 89: 2948-2955
MeSH Terms: Acrylic Resins, Animals, Cerebellum, Chromatography, High Pressure Liquid, Hydrogels, Liver, Proteins, Proteolysis, Rats, Tandem Mass Spectrometry, Trypsin
Show Abstract · Added March 10, 2017
The identification of proteins from tissue specimens is a challenging area of biological research. Many current techniques for identification forfeit some level of spatial information during the sample preparation process. Recently, hydrogel technologies have been developed that perform spatially localized protein extraction and digestion prior to downstream proteomic analysis. Regiospecific protein identifications acquired using this approach have thus far been limited to 1-2 mm diameter areas. The need to target smaller populations of cells with this technology necessitates the production of smaller diameter hydrogels. Herein, we demonstrate hydrogel fabrication processes that allow hydrogel applications down to a diameter of ∼260 μm, approximately 1/15 of the area of previous approaches. Parameters such as the percent polyacrylamide used in hydrogel construction as well as the concentration of trypsin with which the hydrogel is loaded are investigated to maximize the number of protein identifications from subsequent liquid chromatography tandem MS (LC-MS/MS) analysis of hydrogel extracts. An 18% polyacrylamide concentration is shown to provide for a more rigid polymer network than the conventional 7.5% polyacrylamide concentration and supports the fabrication of individual hydrogels using the small punch biopsies. Over 600 protein identifications are still achieved at the smallest hydrogel diameters of 260 μm. The utility of these small hydrogels is demonstrated through the analysis of sub regions of a rat cerebellum tissue section. While over 900 protein identifications are made from each hydrogel, approximately 20% of the proteins identified are unique to each of the two regions, highlighting the importance of targeting tissue subtypes to accurately characterize tissue biology. These newly improved methods to the hydrogel process will allow researchers to target smaller biological features for robust spatially localized proteomic analyses.
1 Communities
2 Members
0 Resources
11 MeSH Terms
Polyacrylamide gels for invadopodia and traction force assays on cancer cells.
Jerrell RJ, Parekh A
(2015) J Vis Exp : 52343
MeSH Terms: Acrylic Resins, Actins, Biomechanical Phenomena, Cell Movement, Extracellular Matrix, Humans, Neoplasms, Podosomes, Proteolysis, Tumor Microenvironment
Show Abstract · Added January 20, 2015
Rigid tumor tissues have been strongly implicated in regulating cancer cell migration and invasion. Invasive migration through cross-linked tissues is facilitated by actin-rich protrusions called invadopodia that proteolytically degrade the extracellular matrix (ECM). Invadopodia activity has been shown to be dependent on ECM rigidity and cancer cell contractile forces suggesting that rigidity signals can regulate these subcellular structures through actomyosin contractility. Invasive and contractile properties of cancer cells can be correlated in vitro using invadopodia and traction force assays based on polyacrylamide gels (PAAs) of different rigidities. Invasive and contractile properties of cancer cells can be correlated in vitro using invadopodia and traction force assays based on polyacrylamide gels (PAAs) of different rigidities. While some variations between the two assays exist, the protocol presented here provides a method for creating PAAs that can be used in both assays and are easily adaptable to the user's specific biological and technical needs.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release.
Gupta MK, Martin JR, Werfel TA, Shen T, Page JM, Duvall CL
(2014) J Am Chem Soc 136: 14896-902
MeSH Terms: Acrylamides, Acrylic Resins, Animals, Biocompatible Materials, Drug Carriers, Drug Liberation, Hydrogels, Mice, Micelles, Models, Molecular, Molecular Conformation, NIH 3T3 Cells, Oxazines, Polymers, Reactive Oxygen Species, Rheology, Sulfides, Temperature
Show Abstract · Added March 14, 2018
A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive oxygen species (ROS) triggered degradation and drug release. At ambient temperature (25 °C), PPS-b-PDMA-b-PNIPAAM assembled into 66 ± 32 nm micelles comprising a hydrophobic PPS core and PNIPAAM on the outer corona. Upon heating to physiologic temperature (37 °C), which exceeds the lower critical solution temperature (LCST) of PNIPAAM, micelle solutions (at ≥2.5 wt %) sharply transitioned into stable, hydrated gels. Temperature-dependent rheology indicated that the equilibrium storage moduli (G') of hydrogels at 2.5, 5.0, and 7.5 wt % were 20, 380, and 850 Pa, respectively. The PPS-b-PDMA-b-PNIPAAM micelles were preloaded with the model drug Nile red, and the resulting hydrogels demonstrated ROS-dependent drug release. Likewise, exposure to the peroxynitrite generator SIN-1 degraded the mechanical properties of the hydrogels. The hydrogels were cytocompatible in vitro and were demonstrated to have utility for cell encapsulation and delivery. These hydrogels also possessed inherent cell-protective properties and reduced ROS-mediated cellular death in vitro. Subcutaneously injected PPS-b-PDMA-b-PNIPAAM polymer solutions formed stable hydrogels that sustained local release of the model drug Nile red for 14 days in vivo. These collective data demonstrate the potential use of PPS-b-PDMA-b-PNIPAAM as an injectable, cyto-protective hydrogel that overcomes conventional PNIPAAM hydrogel limitations such as syneresis, lack of degradability, and lack of inherent drug loading and environmentally responsive release mechanisms.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Cellular traction stresses mediate extracellular matrix degradation by invadopodia.
Jerrell RJ, Parekh A
(2014) Acta Biomater 10: 1886-96
MeSH Terms: Acrylic Resins, Actomyosin, Cell Line, Tumor, Extracellular Matrix, Fibronectins, Humans, Microscopy, Oxazoles, Pseudopodia, Stress, Mechanical
Show Abstract · Added March 10, 2014
During tumorigenesis, matrix rigidity can drive oncogenic transformation via altered cellular proliferation and migration. Cells sense extracellular matrix (ECM) mechanical properties with intracellular tensile forces generated by actomyosin contractility. These contractile forces are transmitted to the matrix surface as traction stresses, which mediate mechanical interactions with the ECM. Matrix rigidity has been shown to increase proteolytic ECM degradation by cytoskeletal structures known as invadopodia that are critical for cancer progression, suggesting that cellular contractility promotes invasive behavior. However, both increases and decreases in traction stresses have been associated with metastatic behavior. Therefore, the role of cellular contractility in invasive migration leading to metastasis is unclear. To determine the relationship between cellular traction stresses and invadopodia activity, we characterized the invasive and contractile properties of an aggressive carcinoma cell line utilizing polyacrylamide gels of different rigidities. We found that ECM degradation and traction stresses were linear functions of matrix rigidity. Using calyculin A to augment myosin contractility, we also found that traction stresses were strongly predictive of ECM degradation. Overall, our data suggest that cellular force generation may play an important part in invasion and metastasis by mediating invadopodia activity in response to the mechanical properties of the tumor microenvironment.
Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release.
Gupta MK, Meyer TA, Nelson CE, Duvall CL
(2012) J Control Release 162: 591-8
MeSH Terms: Acrylic Resins, Animals, Carbocyanines, Cell Line, Cell Survival, Drug Carriers, Fluorescent Dyes, L-Lactate Dehydrogenase, Macrophages, Mice, Micelles, Oxazines, Reactive Oxygen Species, Sulfides
Show Abstract · Added December 5, 2013
A new micelle drug carrier that consists of a diblock polymer of propylene sulfide (PS) and N,N-dimethylacrylamide (poly(PS₇₄-b-DMA₃₁₀)) has been synthesized and characterized for site-specific release of hydrophobic drugs to sites of inflammation. Propylene sulfide was first polymerized using a thioacyl group transfer (TAGT) method with the RAFT chain transfer agent (CTA) 4-cyano-4-(ethylsulfanylthiocarbonylsulfanyl) pentanoic acid (CEP), and the resultant poly(PS₇₄-CEP) macro-CTA was used to polymerize a second polymer block of DMA using reversible addition-fragmentation chain transfer (RAFT). The formation of the poly(PS₇₄-b-DMA₃₁₀) diblock polymer was confirmed by ¹H NMR spectra and gel permeation chromatography (GPC). Poly(PS₇₄-b-DMA₃₁₀) formed 100 nm micelles in aqueous media as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Micelles loaded with the model drugs Nile red and DiO were used to demonstrate the ROS-dependent drug release mechanism of these micelles following treatment with hydrogen peroxide (H₂O₂), 3-morpholinosydnonimine (SIN-1), and peroxynitrite. These oxidants were found to oxidize the micelle PPS core, making it more hydrophilic and triggering micelle disassembly and cargo release. Delivery of poly(PS₇₄-b-DMA₃₁₀) micelles dual-loaded with the Förster Resonance Energy Transfer (FRET) fluorophore pair DiI and DiO was used to prove that endogenous oxidants generated by lipopolysaccharide (LPS)-treated RAW 264.7 macrophages significantly increased release of nanocarrier contents relative to macrophages that were not activated. In vitro studies also demonstrated that the poly(PS₇₄-b-DMA₃₁₀) micelles were cytocompatible across a broad range of concentrations. These combined data suggest that the poly(PS₇₄-b-DMA₃₁₀) micelles synthesized using a combination of TAGT and RAFT have significant potential for site-specific drug delivery to tissues with high levels of oxidative stress.
Copyright © 2012 Elsevier B.V. All rights reserved.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Final report of the Cosmetic Ingredient Review Expert Panel safety assessment of polymethyl methacrylate (PMMA), methyl methacrylate crosspolymer, and methyl methacrylate/glycol dimethacrylate crosspolymer.
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA
(2011) Int J Toxicol 30: 54S-65S
MeSH Terms: Acrylic Resins, Animals, Consumer Product Safety, Cosmetics, Humans, Molecular Structure, Polymers, Polymethyl Methacrylate, Toxicity Tests
Show Abstract · Added March 20, 2014
Polymethyl methacrylate (PMMA) and related cosmetic ingredients methyl methacrylate crosspolymer and methyl methacrylate/glycol dimethacrylate crosspolymer are polymers that function as film formers and viscosity-increasing agents in cosmetics. The Food and Drug Administration (FDA) determination of safety of PMMA use in several medical devices, which included human and animal safety data, was used as the basis of safety of PMMA and related polymers in cosmetics by the Cosmetic Ingredient Review (CIR) Expert Panel.  The PMMA used in cosmetics is substantially the same as in medical devices.  The Panel concluded that these ingredients are safe as cosmetic ingredients in the practices of use and concentrations as described in this safety assessment.
0 Communities
1 Members
0 Resources
9 MeSH Terms
RAFT-synthesized graft copolymers that enhance pH-dependent membrane destabilization and protein circulation times.
Crownover E, Duvall CL, Convertine A, Hoffman AS, Stayton PS
(2011) J Control Release 155: 167-74
MeSH Terms: Acrylates, Acrylic Resins, Animals, Antineoplastic Agents, Avidin, Azides, Biotin, Cell Membrane, Cell Survival, Click Chemistry, Cyclization, Dose-Response Relationship, Drug, Drug Carriers, Erythrocytes, HeLa Cells, Hemolysis, Humans, Hydrogen-Ion Concentration, Lipid Bilayers, Methacrylates, Mice, Molecular Structure, Polymers, Time Factors, Tissue Distribution, Xenograft Model Antitumor Assays
Show Abstract · Added March 14, 2018
Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3 + 2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent membrane-destabilizing activity, low cytotoxicity, significantly enhanced blood circulation time, and increased tumor accumulation.
Copyright © 2011 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
26 MeSH Terms
Sensing and modulation of invadopodia across a wide range of rigidities.
Parekh A, Ruppender NS, Branch KM, Sewell-Loftin MK, Lin J, Boyer PD, Candiello JE, Merryman WD, Guelcher SA, Weaver AM
(2011) Biophys J 100: 573-582
MeSH Terms: Acrylic Resins, Animals, Basement Membrane, Biomechanical Phenomena, Cell Surface Extensions, Elastic Modulus, Extracellular Matrix, Microscopy, Atomic Force, Models, Biological, Polyurethanes, Pressure, Sus scrofa, Urinary Bladder
Show Abstract · Added December 5, 2013
Recent studies have suggested that extracellular matrix rigidity regulates cancer invasiveness, including the formation of cellular invadopodial protrusions; however, the relevant mechanical range is unclear. Here, we used a combined analysis of tissue-derived model basement membrane (BM) and stromal matrices and synthetic materials to understand how substrate rigidity regulates invadopodia. Urinary bladder matrix-BM (UBM-BM) was found to be a rigid material with elastic moduli of 3-8 MPa, as measured by atomic force microscopy and low-strain tensile testing. Stromal elastic moduli were ∼6-fold lower, indicating a more compliant material. Using synthetic substrates that span kPa-GPa moduli, we found a peak of invadopodia-associated extracellular matrix degradation centered around 30 kPa, which also corresponded to a peak in invadopodia/cell. Surprisingly, we observed another peak in invadopodia numbers at 2 GPa as well as gene expression changes that indicate cellular sensing of very high moduli. Based on the measured elastic moduli of model stroma and BM, we expected to find more invadopodia formation on the stroma, and this was verified on the stromal versus BM side of UBM-BM. These data suggest that cells can sense a wide range of rigidities, up into the GPa range. Furthermore, there is an optimal rigidity range for invadopodia activity that may be limited by BM rigidity.
Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
3 Communities
4 Members
0 Resources
13 MeSH Terms
Salvage radioembolization of liver-dominant metastases with a resin-based microsphere: initial outcomes.
Stuart JE, Tan B, Myerson RJ, Garcia-Ramirez J, Goddu SM, Pilgram TK, Brown DB
(2008) J Vasc Interv Radiol 19: 1427-33
MeSH Terms: Acrylic Resins, Adult, Aged, Aged, 80 and over, Breast Neoplasms, Colonic Neoplasms, Drug Carriers, Female, Humans, Liver Neoplasms, Male, Middle Aged, Pilot Projects, Radiography, Radiopharmaceuticals, Retrospective Studies, Salvage Therapy, Treatment Outcome, Yttrium Radioisotopes
Show Abstract · Added March 5, 2014
PURPOSE - The use of radioembolization of hepatic metastases with yttrium-90 ((90)Y) microspheres is increasing. The present report describes the outcomes in a cohort of patients with metastatic liver tumors treated with a resin-based microsphere agent.
MATERIALS AND METHODS - Thirty patients with colon (n = 13), breast (n = 7), and other primary cancers (n = 10) were treated after the failure of first- and second-line therapy. Overall survival (OS), time to progression (TTP), and time to treatment failure (TTTF) were calculated from the first treatment. Response was measured according to Response Evaluation Criteria In Solid Tumors at interval follow-up imaging.
RESULTS - Thirty patients underwent 56 infusions of (90)Y, and 18 remained alive at the end of the study. Fourteen patients (47%) had a partial response or stable disease. OS (604 vs 251 days), TTP (223 vs 87 days), and TTTF (363 vs 87 days) were all significantly longer for patients who had a partial response or stable disease (P < .05). Median OS, TTP, and TTTF for patients with colorectal carcinoma were 357, 112, and 107 days, respectively, versus 638, 118, and 363 days in patients with other metastatic sources. Median survival was not reached for patients with breast carcinoma, and the TTP and TTTF were each 282 days. One patient (3%) experienced grade 3 toxicity (gastrointestinal ulceration).
CONCLUSIONS - (90)Y microsphere therapy produced promising survival rates compared with systemic salvage options, with minimal toxicity.
0 Communities
1 Members
0 Resources
19 MeSH Terms