Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 71

Publication Record

Connections

Proton minibeams-a springboard for physics, biology and clinical creativity.
Dilmanian FA, Venkatesulu BP, Sahoo N, Wu X, Nassimi JR, Herchko S, Lu J, Dwarakanath BS, Eley JG, Krishnan S
(2020) Br J Radiol 93: 20190332
MeSH Terms: Absorption, Radiation, Algorithms, Creativity, Dose Fractionation, Radiation, Feasibility Studies, Humans, Monte Carlo Method, Neoplasms, Organ Sparing Treatments, Organs at Risk, Proton Therapy, Radiobiology, Radiometry
Show Abstract · Added March 30, 2020
Proton minibeam therapy (PMBT) is a form of spatially fractionated radiotherapy wherein broad beam radiation is replaced with segmented minibeams-either parallel, planar minibeam arrays generated by a multislit collimator or scanned pencil beams that converge laterally at depth to create a uniform dose layer at the tumor. By doing so, the spatial pattern of entrance dose is considerably modified while still maintaining tumor dose and efficacy. Recent studies using computational modeling, phantom experiments, and preclinical models, and early clinical feasibility assessments suggest that unique physical and biological attributes of PMBT can be exploited for future clinical benefit. We outline some of the guiding principle of PMBT in this concise overview of this emerging area of preclinical and clinical research inquiry.
0 Communities
1 Members
0 Resources
MeSH Terms
Nod-like receptors are critical for gut-brain axis signalling in mice.
Pusceddu MM, Barboza M, Keogh CE, Schneider M, Stokes P, Sladek JA, Kim HJD, Torres-Fuentes C, Goldfild LR, Gillis SE, Brust-Mascher I, Rabasa G, Wong KA, Lebrilla C, Byndloss MX, Maisonneuve C, Bäumler AJ, Philpott DJ, Ferrero RL, Barrett KE, Reardon C, Gareau MG
(2019) J Physiol 597: 5777-5797
MeSH Terms: Animals, Anxiety, Brain, Cells, Cultured, Cognition, Female, Hypothalamo-Hypophyseal System, Intestinal Absorption, Intestinal Mucosa, Male, Mice, Mice, Inbred C57BL, Neurogenesis, Nod1 Signaling Adaptor Protein, Nod2 Signaling Adaptor Protein, Serotonin, Stress, Psychological, Synaptic Transmission
Show Abstract · Added March 30, 2020
KEY POINTS - •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour.
ABSTRACT - Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre Nod1 ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.
© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Loss of MYO5B Leads to Reductions in Na Absorption With Maintenance of CFTR-Dependent Cl Secretion in Enterocytes.
Engevik AC, Kaji I, Engevik MA, Meyer AR, Weis VG, Goldstein A, Hess MW, Müller T, Koepsell H, Dudeja PK, Tyska M, Huber LA, Shub MD, Ameen N, Goldenring JR
(2018) Gastroenterology 155: 1883-1897.e10
MeSH Terms: Animals, Aquaporins, Chlorides, Cystic Fibrosis Transmembrane Conductance Regulator, Duodenum, Enterocytes, Gene Silencing, Humans, Intestinal Mucosa, Intestines, Malabsorption Syndromes, Mice, Mice, Knockout, Microvilli, Mucolipidoses, Myosin Type V, Protein Transport, Sodium-Glucose Transporter 1, Sodium-Hydrogen Exchanger 3, Sodium-Hydrogen Exchangers, Sucrase-Isomaltase Complex, Tamoxifen
Show Abstract · Added February 7, 2019
BACKGROUND & AIMS - Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters.
METHODS - We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCre;Myo5b mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry.
RESULTS - Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCre;Myo5b mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCre;Myo5b mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCre;Myo5b mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity.
CONCLUSIONS - Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.
Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
MeSH Terms
BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability.
Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, Keating CE, Thompson JJ, Verriere TG, Brown RE, Piazuelo MB, Bader DM, Washington MK, Mittal MK, Brand T, Gobert AP, Coburn LA, Wilson KT, Williams CS
(2018) Mucosal Immunol 11: 1363-1374
MeSH Terms: Adult, Animals, Caco-2 Cells, Cell Adhesion Molecules, Cell Line, Cell Line, Tumor, Citrobacter rodentium, Coculture Techniques, Colitis, Ulcerative, Colon, Dextran Sulfate, Epithelial Cells, Escherichia coli, Female, HEK293 Cells, Humans, Intestinal Absorption, Intestinal Mucosa, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Middle Aged, Muscle Proteins, Permeability, RNA, Messenger, Signal Transduction, Tight Junctions
Show Abstract · Added June 23, 2018
Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.
0 Communities
3 Members
0 Resources
28 MeSH Terms
Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method.
Liu J, Cao J, Cao J, Han S, Liang Y, Bai M, Sun Y
(2018) Int J Nanomedicine 13: 2839-2856
MeSH Terms: Administration, Oral, Animals, Caco-2 Cells, Drug Carriers, Humans, Hydrophobic and Hydrophilic Interactions, Indoles, Intestinal Absorption, Intestinal Mucosa, Male, Methacrylates, Methylmethacrylates, Mice, Nanoparticles, Nylons, Particle Size, Polymers, Propionates, Tissue Distribution
Show Abstract · Added April 2, 2019
Introduction - Nanoparticles are increasingly used as drug carriers for oral administration. The delivery of drug molecules is largely dependent on the interaction of nanocarriers and gastrointestinal (GI) mucus, a critical barrier that regulates drug absorption. It is therefore important to understand the effects of physical and chemical properties of nanocarriers on the interaction with GI mucus. Unfortunately, most of the nanoparticles are unable to be prepared with satisfactory structural monodispersity to comprehensively investigate the interaction. With controlled size, shape, and surface chemistry, copolymers are ideal candidates for such purpose.
Materials and methods - We synthesized a series of diblock copolymers via the atom transfer radical polymerization method and investigated the GI mucus permeability in vitro and in vivo.
Results - Our results indicated that uncharged and hydrophobic copolymers exhibited enhanced GI absorption.
Conclusion - These results provide insights into developing optimal nanocarriers for oral administration.
0 Communities
1 Members
0 Resources
MeSH Terms
CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels.
Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L, Pietka T, Xiong Y, Wei Y, Abumrad NN, Abumrad NA, Flynn CR
(2018) J Clin Endocrinol Metab 103: 1856-1866
MeSH Terms: Adult, African Americans, Bile Acids and Salts, CD36 Antigens, Case-Control Studies, Energy Metabolism, Fasting, Female, Genotype, Hormones, Humans, Intestinal Absorption, Middle Aged, Polymorphism, Single Nucleotide
Show Abstract · Added May 14, 2018
Context - Abnormal fatty acid (FA) metabolism contributes to diabetes and cardiovascular disease. The FA receptor CD36 has been linked to risk of metabolic syndrome. In rodents CD36 regulates various aspects of fat metabolism, but whether it has similar actions in humans is unknown. We examined the impact of a coding single-nucleotide polymorphism in CD36 on postprandial hormone and bile acid (BA) responses.
Objective - To examine whether the minor allele (G) of coding CD36 variant rs3211938 (G/T), which reduces CD36 level by ∼50%, influences hormonal responses to a high-fat meal (HFM).
Design - Obese African American (AA) women carriers of the G allele of rs3211938 (G/T) and weight-matched noncarriers (T/T) were studied before and after a HFM.
Setting - Two-center study.
Participants - Obese AA women.
Intervention - HFM.
Main Outcome Measures - Early preabsorptive responses (10 minutes) and extended excursions in plasma hormones [C-peptide, insulin, incretins, ghrelin fibroblast growth factor (FGF)19, FGF21], BAs, and serum lipoproteins (chylomicrons, very-low-density lipoprotein) were determined.
Results - At fasting, G-allele carriers had significantly reduced cholesterol and glycodeoxycholic acid and consistent but nonsignificant reductions of serum lipoproteins. Levels of GLP-1 and pancreatic polypeptide (PP) were reduced 60% to 70% and those of total BAs were 1.8-fold higher. After the meal, G-allele carriers displayed attenuated early (-10 to 10 minute) responses in insulin, C-peptide, GLP-1, gastric inhibitory peptide, and PP. BAs exhibited divergent trends in G allele carriers vs noncarriers concomitant with differential FGF19 responses.
Conclusions - CD36 plays an important role in the preabsorptive hormone and BA responses that coordinate brain and gut regulation of energy metabolism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease.
Vogel GF, Janecke AR, Krainer IM, Gutleben K, Witting B, Mitton SG, Mansour S, Ballauff A, Roland JT, Engevik AC, Cutz E, Müller T, Goldenring JR, Huber LA, Hess MW
(2017) Traffic 18: 453-464
MeSH Terms: Caco-2 Cells, Cell Membrane, Enterocytes, Humans, Malabsorption Syndromes, Male, Microvilli, Mucolipidoses, Mutation, Myosin Type V, Protein Transport, Qa-SNARE Proteins, Secretory Vesicles, rab GTP-Binding Proteins
Show Abstract · Added April 18, 2017
Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Inflammatory cytokines regulate renal sodium transporters: how, where, and why?
Norlander AE, Madhur MS
(2017) Am J Physiol Renal Physiol 313: F141-F144
MeSH Terms: Animals, Blood Pressure, Cytokines, Epithelial Cells, Epithelial Sodium Channels, Humans, Hypertension, Inflammation Mediators, Kidney, Membrane Transport Proteins, Renal Reabsorption, Signal Transduction, Sodium Chloride, Dietary
Show Abstract · Added September 7, 2017
Hypertension is growing in epidemic proportions worldwide and is now the leading preventable cause of premature death. For over a century, we have known that the kidney plays a critical role in blood pressure regulation. Specifically, abnormalities in renal sodium transport appear to be a final common pathway that gives rise to elevated blood pressure regardless of the nature of the initial hypertensive stimulus. However, it is only in the past decade that we have come to realize that inflammatory cytokines secreted by innate and adaptive immune cells, as well as renal epithelial cells, can modulate the expression and activity of sodium transporters all along the nephron, leading to alterations in pressure natriuresis, sodium and water balance, and ultimately hypertension. This mini-review highlights specific cytokines and the transporters that they regulate and discusses why inflammatory cytokines may have evolved to serve this function.
Copyright © 2017 the American Physiological Society.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.
Engevik AC, Goldenring JR
(2018) Cold Spring Harb Perspect Biol 10:
MeSH Terms: Animals, Cell Membrane, Cell Polarity, Cystic Fibrosis Transmembrane Conductance Regulator, Cytoskeletal Proteins, Enterocytes, Humans, Ion Transport, Malabsorption Syndromes, Membrane Transport Proteins, Microvilli, Mucolipidoses, Myosin Heavy Chains, Myosin Type V, Protein Transport, Sodium-Hydrogen Exchanger 3
Show Abstract · Added April 18, 2017
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats.
Sato H, Zhang LS, Martinez K, Chang EB, Yang Q, Wang F, Howles PN, Hokari R, Miura S, Tso P
(2016) Gastroenterology 151: 923-932
MeSH Terms: Animals, Anti-Bacterial Agents, Dietary Fats, Gastrointestinal Microbiome, Intestinal Absorption, Intestinal Mucosa, Male, Mast Cells, Penicillins, Permeability, Rats, Rats, Sprague-Dawley, Streptomycin
Show Abstract · Added August 5, 2016
BACKGROUND & AIMS - The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process.
METHODS - Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters.
RESULTS - Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended.
CONCLUSIONS - The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons.
Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms