Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 259

Publication Record

Connections

Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A.
Hoang CQ, Hale MA, Azevedo-Pouly AC, Elsässer HP, Deering TG, Willet SG, Pan FC, Magnuson MA, Wright CV, Swift GH, MacDonald RJ
(2016) Mol Cell Biol 36: 3033-3047
Show Abstract · Added November 1, 2016
Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by derepression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.
2 Communities
2 Members
0 Resources
0 MeSH Terms
The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.
Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, Shay S, French JL, West J, Haase VH
(2016) Mol Cell Biol 36: 1584-94
Show Abstract · Added March 16, 2016
Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension.
0 Communities
1 Members
0 Resources
0 MeSH Terms
LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding.
Layer JH, Alford CE, McDonald WH, Davé UP
(2015) Mol Cell Biol 36: 488-506
MeSH Terms: Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Amino Acid Substitution, Cell Line, DNA-Binding Proteins, Humans, Jurkat Cells, LIM Domain Proteins, Leukemia, T-Cell, Molecular Sequence Data, Mutation, Protein Interaction Domains and Motifs, Protein Interaction Maps, Protein Stability, Proto-Oncogene Proteins, Transcription Factors, Transcriptional Activation
Show Abstract · Added January 26, 2016
LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R(320)LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.
Cohen MR, Johnson WM, Pilat JM, Kiselar J, DeFrancesco-Lisowitz A, Zigmond RE, Moiseenkova-Bell VY
(2015) Mol Cell Biol 35: 4238-52
MeSH Terms: Animals, Calcium, Calcium Channels, Cell Line, Tumor, Extracellular Signal-Regulated MAP Kinases, HEK293 Cells, Humans, MAP Kinase Signaling System, Nerve Growth Factor, Neurites, Neurogenesis, Neurons, PC12 Cells, Phosphatidylinositol 3-Kinases, Phosphorylation, RNA Interference, RNA, Small Interfering, Rats, Receptor, trkA, TRPV Cation Channels, rab GTP-Binding Proteins
Show Abstract · Added April 24, 2017
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Histone Deacetylase 3 Is Required for Efficient T Cell Development.
Stengel KR, Zhao Y, Klus NJ, Kaiser JF, Gordy LE, Joyce S, Hiebert SW, Summers AR
(2015) Mol Cell Biol 35: 3854-65
MeSH Terms: Animals, Antigens, CD4, Antigens, CD8, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cell Differentiation, Gene Deletion, Gene Expression Regulation, Developmental, Histone Deacetylases, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Proto-Oncogene Proteins c-bcl-2, Receptors, Antigen, T-Cell, alpha-beta, T-Lymphocytes, bcl-X Protein
Show Abstract · Added September 28, 2015
Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4(+) or CD8(+) single-positive cells being produced. When Hdac3(-/-) mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection.
1 Communities
2 Members
0 Resources
18 MeSH Terms
Enhancer of Rudimentary Homolog Affects the Replication Stress Response through Regulation of RNA Processing.
Kavanaugh G, Zhao R, Guo Y, Mohni KN, Glick G, Lacy ME, Hutson MS, Ascano M, Cortez D
(2015) Mol Cell Biol 35: 2979-90
MeSH Terms: Ataxia Telangiectasia Mutated Proteins, Base Sequence, Cell Cycle Proteins, Cell Line, DNA Damage, DNA Repair, DNA Replication, Gene Expression Profiling, HEK293 Cells, Humans, RNA Interference, RNA Splicing, RNA, Small Interfering, Regulatory Sequences, Nucleic Acid, Sequence Analysis, RNA, Signal Transduction, Stress, Physiological, Transcription Factors
Show Abstract · Added February 4, 2016
Accurate replication of DNA is imperative for the maintenance of genomic integrity. We identified Enhancer of Rudimentary Homolog (ERH) using a whole-genome RNA interference (RNAi) screen to discover novel proteins that function in the replication stress response. Here we report that ERH is important for DNA replication and recovery from replication stress. ATR pathway activity is diminished in ERH-deficient cells. The reduction in ATR signaling corresponds to a decrease in the expression of multiple ATR pathway genes, including ATR itself. ERH interacts with multiple RNA processing complexes, including splicing regulators. Furthermore, splicing of ATR transcripts is deficient in ERH-depleted cells. Transcriptome-wide analysis indicates that ERH depletion affects the levels of ∼1,500 transcripts, with DNA replication and repair genes being highly enriched among those with reduced expression. Splicing defects were evident in ∼750 protein-coding genes, which again were enriched for DNA metabolism genes. Thus, ERH regulation of RNA processing is needed to ensure faithful DNA replication and repair.
0 Communities
1 Members
0 Resources
MeSH Terms
Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.
Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM, Chen J
(2015) Mol Cell Biol 35: 1299-313
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Carrier Proteins, Cell Proliferation, Cells, Cultured, Endothelial Cells, Gene Deletion, Human Umbilical Vein Endothelial Cells, Humans, Mice, Multiprotein Complexes, Neovascularization, Physiologic, Phosphorylation, Protein Kinase C-alpha, Proto-Oncogene Proteins c-akt, Signal Transduction, TOR Serine-Threonine Kinases, Vascular Endothelial Growth Factor A
Show Abstract · Added February 15, 2016
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Organization and execution of the epithelial polarity programme.
Rodriguez-Boulan E, Macara IG
(2014) Nat Rev Mol Cell Biol 15: 225-42
MeSH Terms: Animals, Cell Membrane, Cell Polarity, Epithelial Cells, Humans, Intercellular Junctions, Morphogenesis, Signal Transduction
Show Abstract · Added May 30, 2014
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
0 Communities
1 Members
0 Resources
8 MeSH Terms
From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression.
Burns LT, Wente SR
(2014) Mol Cell Biol 34: 2114-20
MeSH Terms: Animals, Gene Expression Regulation, Gene Order, Humans, Models, Biological, Nuclear Pore, Nuclear Pore Complex Proteins, RNA Transport
Show Abstract · Added March 21, 2014
The gene gating hypothesis put forth by Blobel in 1985 was an alluring proposal outlining functions for the nuclear pore complex (NPC) in transcription and nuclear architecture. Over the past several decades, collective studies have unveiled a full catalog of nucleoporins (Nups) that comprise the NPC, structural arrangements of Nups in the nuclear pore, and mechanisms of nucleocytoplasmic transport. With this foundation, investigations of the gene gating hypothesis have now become possible. Studies of several model organisms provide credence for Nup functions in transcription, mRNA export, and genome organization. Surprisingly, Nups are not only involved in transcriptional events that occur at the nuclear periphery, but there are also novel roles for dynamic Nups within the nucleoplasmic compartment. Several tenants of the original gene gating hypothesis have yet to be addressed. Knowledge of whether the NPC impacts the organization of the genome to control subsets of genes is limited, and the cooperating molecular machinery or specific genomic anchoring sequences are not fully resolved. This minireview summarizes the current evidence for gene gating in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian model systems. These examples highlight new and unpredicted mechanisms for Nup impacts on transcription and questions that are left to be explored.
0 Communities
1 Members
0 Resources
8 MeSH Terms
ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site.
Almodóvar-García K, Kwon M, Samaras SE, Davidson JM
(2014) Mol Cell Biol 34: 1500-11
MeSH Terms: Animals, Cell Line, Fibroblasts, Gene Expression, Matrix Metalloproteinase 13, Mice, Mice, Knockout, Muscle Proteins, Nuclear Proteins, Phosphoproteins, Promoter Regions, Genetic, RNA, Messenger, RNA-Binding Proteins, Repressor Proteins, Sequence Deletion, Transcription Factor AP-1
Show Abstract · Added January 20, 2015
The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs.
1 Communities
0 Members
0 Resources
4 MeSH Terms