Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 324

Publication Record

Connections

Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD.
Benjamin JT, Plosa E, Sucre J, van der Meer R, Dave S, Gutor SS, Nichols D, Gulleman P, Jetter C, Han W, Xin MK, Dinella PC, Catanzarite A, Kook S, Dolma K, Lal CV, Gaggar A, Blalock JE, Newcomb DC, Richmond BW, Kropski JA, Young LR, Guttentag S, Blackwell TS
(2020) J Clin Invest :
Show Abstract · Added October 30, 2020
Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage [postnatal day (PN)3 - PN5] but not alveolar stage (PN10 - PN12) of lung development disrupts elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progresses through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, both purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation down-regulated elastin and fibulin-5 expression by saccular stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. While neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early life predisposition to COPD.
1 Communities
0 Members
0 Resources
0 MeSH Terms
Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells.
Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB, Wilson KT, Peek RM, Zaika AI
(2020) J Clin Invest 130: 2422-2434
Show Abstract · Added April 7, 2020
Approximately half of the world's population is infected with the stomach pathogen Helicobacter pylori. Infection with H. pylori is the main risk factor for distal gastric cancer. Bacterial virulence factors, such as the oncoprotein CagA, augment cancer risk. Yet despite high infection rates, only a fraction of H. pylori-infected individuals develop gastric cancer. This raises the question of defining the specific host and bacterial factors responsible for gastric tumorigenesis. To investigate the tumorigenic determinants, we analyzed gastric tissues from human subjects and animals infected with H. pylori bacteria harboring different CagA status. For laboratory studies, well-defined H. pylori strain B128 and its cancerogenic derivative strain 7.13, as well as various bacterial isogenic mutants were employed. We found that H. pylori compromises key tumor suppressor mechanisms: the host stress and apoptotic responses. Our studies showed that CagA induces phosphorylation of XIAP E3 ubiquitin ligase, which enhances ubiquitination and proteasomal degradation of the host proapoptotic factor Siva1. This process is mediated by the PI3K/Akt pathway. Inhibition of Siva1 by H. pylori increases survival of human cells with damaged DNA. It occurs in a strain-specific manner and is associated with the ability to induce gastric tumor.
0 Communities
1 Members
0 Resources
0 MeSH Terms
Addressing the physician-scientist pipeline: strategies to integrate research into clinical training programs.
Permar SR, Ward RA, Barrett KJ, Freel SA, Gbadegesin RA, Kontos CD, Hu PJ, Hartmann KE, Williams CS, Vyas JM
(2020) J Clin Invest 130: 1058-1061
MeSH Terms: Biomedical Research, Career Choice, Education, Medical, Humans, Nobel Prize, Physicians, Research Personnel
Added August 5, 2020
0 Communities
1 Members
0 Resources
7 MeSH Terms
The 2019 Nobel Prize honors fundamental discoveries in hypoxia response.
Moslehi J, Rathmell WK
(2020) J Clin Invest 130: 4-6
MeSH Terms: Cell Hypoxia, History, 20th Century, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Nobel Prize, Vascular Endothelial Growth Factor A, Von Hippel-Lindau Tumor Suppressor Protein
Added November 27, 2019
0 Communities
2 Members
0 Resources
7 MeSH Terms
GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions.
Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, Taylor SR, Duman CH, Delpire E, Picciotto M, Wohleb ES, Duman RS
(2020) J Clin Invest 130: 1336-1349
Show Abstract · Added March 18, 2020
A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.
0 Communities
1 Members
0 Resources
0 MeSH Terms
Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence.
Fatima S, Kamble SS, Dwivedi VP, Bhattacharya D, Kumar S, Ranganathan A, Van Kaer L, Mohanty S, Das G
(2020) J Clin Invest 130: 655-661
MeSH Terms: Animals, Autophagic Cell Death, Cellular Reprogramming, Disease Models, Animal, Humans, Lipids, Mesenchymal Stem Cells, Mice, Mycobacterium tuberculosis, Phagosomes, Tuberculosis
Show Abstract · Added March 3, 2020
Tuberculosis (TB) remains a major infectious disease worldwide. TB treatment displays a biphasic bacterial clearance, in which the majority of bacteria clear within the first month of treatment, but residual bacteria remain nonresponsive to treatment and eventually may become resistant. Here, we have shown that Mycobacterium tuberculosis was taken up by mesenchymal stem cells (MSCs), where it established dormancy and became highly nonresponsive to isoniazid, a major constituent of directly observed treatment short course (DOTS). Dormant M. tuberculosis induced quiescence in MSCs and promoted their long-term survival. Unlike macrophages, where M. tuberculosis resides in early-phagosomal compartments, in MSCs the majority of bacilli were found in the cytosol, where they promoted rapid lipid synthesis, hiding within lipid droplets. Inhibition of lipid synthesis prevented dormancy and sensitized the organisms to isoniazid. Thus, we have established that M. tuberculosis gains dormancy in MSCs, which serve as a long-term natural reservoir of dormant M. tuberculosis. Interestingly, in the murine model of TB, induction of autophagy eliminated M. tuberculosis from MSCs, and consequently, the addition of rapamycin to an isoniazid treatment regimen successfully attained sterile clearance and prevented disease reactivation.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses.
Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV
(2019) J Clin Invest 129: 4797-4816
MeSH Terms: Animals, Ataxia Telangiectasia Mutated Proteins, DNA Damage, DNA Repair, Disease Models, Animal, Female, Fibrosis, Humans, Kidney Diseases, Kidney Tubules, Proximal, Male, Mice, Mice, Knockout, Organoids
Show Abstract · Added March 18, 2020
Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.
0 Communities
1 Members
0 Resources
14 MeSH Terms
β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion.
Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, Chen W, Gurevich VV, Wess J
(2019) J Clin Invest 129: 3732-3737
MeSH Terms: Animals, Genotype, Glyburide, Guanine Nucleotide Exchange Factors, Hypoglycemic Agents, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Mice, Transgenic, Phenotype, Signal Transduction, Sulfonylurea Compounds, Tolbutamide, beta-Arrestin 1, beta-Arrestin 2
Show Abstract · Added March 18, 2020
Beta-arrestin-1 and -2 (Barr1 and Barr2, respectively) are intracellular signaling molecules that regulate many important metabolic functions. We previously demonstrated that mice lacking Barr2 selectively in pancreatic beta-cells showed pronounced metabolic impairments. Here we investigated whether Barr1 plays a similar role in regulating beta-cell function and whole body glucose homeostasis. Initially, we inactivated the Barr1 gene in beta-cells of adult mice (beta-barr1-KO mice). Beta-barr1-KO mice did not display any obvious phenotypes in a series of in vivo and in vitro metabolic tests. However, glibenclamide and tolbutamide, two widely used antidiabetic drugs of the sulfonylurea (SU) family, showed greatly reduced efficacy in stimulating insulin secretion in the KO mice in vivo and in perifused KO islets in vitro. Additional in vivo and in vitro studies demonstrated that Barr1 enhanced SU-stimulated insulin secretion by promoting SU-mediated activation of Epac2. Pull-down and co-immunoprecipitation experiments showed that Barr1 can directly interact with Epac2 and that SUs such as glibenclamide promote Barr1/Epac2 complex formation, triggering enhanced Rap1 signaling and insulin secretion. These findings suggest that strategies aimed at promoting Barr1 signaling in beta-cells may prove useful for the development of efficacious antidiabetic drugs.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Empowering ASCI's support of physician-scientists through stronger institutional connections.
Marr KA, Rathmell WK, Hawley JB, Guth KD
(2019) J Clin Invest 129: 1516-1518
MeSH Terms: Biomedical Research, Humans, Leadership, Societies, Medical, Translational Medical Research, United States
Show Abstract · Added October 30, 2019
The American Society for Clinical Investigation (ASCI), a nonprofit honorary society, was established to support physician-scientists by serving as a benchmark of excellence in medical research, a forum to celebrate advances in medicine, and a vehicle to communicate advances that bridge basic and translational research and their implementation across the growing myriad of medical specialties. A core intention of the Society is to engage the medical research community broadly through transparent communications of our activities and initiatives with the institutions that comprise the base for our membership. Recognizing the importance in identifying and actuating a strategy to support the Society's broad mission, the current leadership has undertaken a strategic plan that initiates with the goal of revamping its Institutional Representatives program. While the Society has grown with the historical privilege of close connections to institutions through an informal web created largely by the elected membership, we aim to improve institutional engagement towards overall goals of embracing and enhancing diversity of our community and implementing future collaborative programs to support physician-scientists. We briefly review ASCI's history, mission, and structure, and present the blueprint of the new Institutional Representatives program.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers.
Chappell JC, Payne LB, Rathmell WK
(2019) J Clin Invest 129: 442-451
MeSH Terms: Carcinoma, Renal Cell, Cell Hypoxia, Genetic Diseases, Inborn, Humans, Kidney Neoplasms, Leiomyomatosis, Models, Biological, Mutation, Neoplastic Syndromes, Hereditary, Neovascularization, Pathologic, Von Hippel-Lindau Tumor Suppressor Protein
Show Abstract · Added October 30, 2019
The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets of kidney cancer therapeutics.
0 Communities
1 Members
0 Resources
11 MeSH Terms