Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 295

Publication Record

Connections

Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction.
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM
(2017) J Clin Invest 127: 2262-2276
Show Abstract · Added June 6, 2017
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
1 Communities
0 Members
0 Resources
0 MeSH Terms
High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation.
Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, Lantier L, LaRocque LM, Marton A, Neubert P, Schröder A, Rakova N, Jantsch J, Dikalova AE, Dikalov SI, Harrison DG, Müller DN, Nishiyama A, Rauh M, Harris RC, Luft FC, Wassermann DH, Sands JM, Titze J
(2017) J Clin Invest :
Show Abstract · Added April 26, 2017
Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.
1 Communities
1 Members
0 Resources
0 MeSH Terms
Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.
Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR, Yu Q, Zhao J, Tai Y, Tang Y, Zhang YY, Rehman S, Sugahara M, Qi Z, Gorcsan J, Vargas SO, Saggar R, Saggar R, Wallace WD, Ross DJ, Haley KJ, Waxman AB, Parikh VN, De Marco T, Hsue PY, Morris A, Simon MA, Norris KA, Gaggioli C, Loscalzo J, Fessel J, Chan SY
(2016) J Clin Invest 126: 3313-35
Show Abstract · Added September 16, 2016
Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus-infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ-GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.
0 Communities
1 Members
0 Resources
0 MeSH Terms
EGFR regulates macrophage activation and function in bacterial infection.
Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK, Peek RM, Piazuelo MB, Wilson KT
(2016) J Clin Invest 126: 3296-312
Show Abstract · Added August 3, 2016
EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.
0 Communities
2 Members
0 Resources
0 MeSH Terms
Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD
(2016) J Clin Invest 126: 2236-48
Show Abstract · Added May 29, 2016
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
0 Communities
2 Members
0 Resources
0 MeSH Terms
Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH
(2016) J Clin Invest 126: 1926-38
Show Abstract · Added May 3, 2016
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
0 Communities
1 Members
0 Resources
0 MeSH Terms
Stress-impaired transcription factor expression and insulin secretion in transplanted human islets.
Dai C, Kayton NS, Shostak A, Poffenberger G, Cyphert HA, Aramandla R, Thompson C, Papagiannis IG, Emfinger C, Shiota M, Stafford JM, Greiner DL, Herrera PL, Shultz LD, Stein R, Powers AC
(2016) J Clin Invest 126: 1857-70
Show Abstract · Added April 12, 2016
Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity.
0 Communities
2 Members
0 Resources
0 MeSH Terms
Immune activation caused by vascular oxidation promotes fibrosis and hypertension.
Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG
(2016) J Clin Invest 126: 1607
Added April 26, 2016
2 Communities
2 Members
0 Resources
0 MeSH Terms
Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver.
Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, Merritt ME, Sherry AD, Malloy CR, Shelton JM, Lambert J, Parks EJ, Corbin I, Magnuson MA, Browning JD, Burgess SC
(2016) J Clin Invest 126: 1605
Added April 26, 2016
1 Communities
1 Members
0 Resources
0 MeSH Terms
H7N9 influenza virus neutralizing antibodies that possess few somatic mutations.
Thornburg NJ, Zhang H, Bangaru S, Sapparapu G, Kose N, Lampley RM, Bombardi RG, Yu Y, Graham S, Branchizio A, Yoder SM, Rock MT, Creech CB, Edwards KM, Lee D, Li S, Wilson IA, García-Sastre A, Albrecht RA, Crowe JE
(2016) J Clin Invest 126: 1482-94
MeSH Terms: Adult, Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Binding Sites, Antibody, Epitope Mapping, Epitopes, Female, Humans, Influenza A Virus, H7N9 Subtype, Influenza Vaccines, Male, Mice, Middle Aged, Mutation
Show Abstract · Added May 4, 2016
Avian H7N9 influenza viruses are group 2 influenza A viruses that have been identified as the etiologic agent for a current major outbreak that began in China in 2013 and may pose a pandemic threat. Here, we examined the human H7-reactive antibody response in 75 recipients of a monovalent inactivated A/Shanghai/02/2013 H7N9 vaccine. After 2 doses of vaccine, the majority of donors had memory B cells that secreted IgGs specific for H7 HA, with dominant responses against single HA subtypes, although frequencies of H7-reactive B cells ranged widely between donors. We isolated 12 naturally occurring mAbs with low half-maximal effective concentrations for binding, 5 of which possessed neutralizing and HA-inhibiting activities. The 5 neutralizing mAbs exhibited narrow breadth of reactivity with influenza H7 strains. Epitope-mapping studies using neutralization escape mutant analysis, deuterium exchange mass spectrometry, and x-ray crystallography revealed that these neutralizing mAbs bind near the receptor-binding pocket on HA. All 5 neutralizing mAbs possessed low numbers of somatic mutations, suggesting the clones arose from naive B cells. The most potent mAb, H7.167, was tested as a prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of the mAb markedly reduced viral lung titers.
0 Communities
1 Members
0 Resources
16 MeSH Terms