NOTICE: Labnodes now supports vumc.org email addresses. If your email changed, please update your profile today.

Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 265

Publication Record

Connections

The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage.
Wani TH, Chakrabarty A, Shibata N, Yamazaki H, Guengerich FP, Chowdhury G
(2017) Chem Res Toxicol 30: 1622-1628
MeSH Terms: Catalase, DNA Cleavage, DNA Damage, Free Radical Scavengers, HEK293 Cells, Hep G2 Cells, Human Umbilical Vein Endothelial Cells, Humans, Microscopy, Fluorescence, Plasmids, Poly(ADP-ribose) Polymerases, Reactive Oxygen Species, Teratogens, Thalidomide
Show Abstract · Added March 14, 2018
Thalidomide [α-(N-phthalimido)glutarimide] (1) is a sedative and antiemetic drug originally introduced into the clinic in the 1950s for the treatment of morning sickness. Although marketed as entirely safe, more than 10 000 babies were born with severe birth defects. Thalidomide was banned and subsequently approved for the treatment of multiple myeloma and complications associated with leprosy. Although known for more than 5 decades, the mechanism of teratogenicity remains to be conclusively understood. Various theories have been proposed in the literature including DNA damage and ROS and inhibition of angiogenesis and cereblon. All of the theories have their merits and limitations. Although the recently proposed cereblon theory has gained wide acceptance, it fails to explain the metabolism and low-dose requirement reported by a number of groups. Recently, we have provided convincing structural evidence in support of the presence of arene oxide and the quinone-reactive intermediates. However, the ability of these reactive intermediates to impart toxicity/teratogenicity needs investigation. Herein we report that the oxidative metabolite of thalidomide, dihydroxythalidomide, is responsible for generating ROS and causing DNA damage. We show, using cell lines, the formation of comet (DNA damage) and ROS. Using DNA-cleavage assays, we also show that catalase, radical scavengers, and desferal are capable of inhibiting DNA damage. A mechanism of teratogenicity is proposed that not only explains the DNA-damaging property but also the metabolism, low concentration, and species-specificity requirements of thalidomide.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Formation of S-[2-(N-Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases.
Sedgeman CA, Su Y, Guengerich FP
(2017) Chem Res Toxicol 30: 1188-1196
MeSH Terms: Animals, Cattle, Chromatography, Liquid, DNA Adducts, DNA Replication, DNA-Directed DNA Polymerase, Ethylene Dibromide, Glutathione, Tandem Mass Spectrometry
Show Abstract · Added March 14, 2018
1,2-Dibromoethane (DBE, ethylene dibromide) is a potent carcinogen due at least in part to its DNA cross-linking effects. DBE cross-links glutathione (GSH) to DNA, notably to sites on 2'-deoxyadenosine and 2'-deoxyguanosine ( Cmarik , J. L. , et al. ( 1991 ) J. Biol. Chem. 267 , 6672 - 6679 ). Adduction at the N6 position of 2'-deoxyadenosine (dA) had not been detected, but this is a site for the linkage of O-alkylguanine DNA alkyltransferase ( Chowdhury , G. , et al. ( 2013 ) Angew. Chem. Int. Ed. 52 , 12879 - 12882 ). We identified and quantified a new adduct, S-[2-(N-deoxyadenosinyl)ethyl]GSH, in calf thymus DNA using LC-MS/MS. Replication studies were performed in duplex oligonucleotides containing this adduct with human DNA polymerases (hPols) η, ι, and κ, as well as with Sulfolobus solfataricus Dpo4, Escherichia coli polymerase I Klenow fragment, and bacteriophage T7 polymerase. hPols η and ι, Dpo4, and Klenow fragment were able to bypass the adduct with only slight impedance; hPol η and ι showed increased misincorporation opposite the adduct compared to that of unmodified 2'-deoxyadenosine. LC-MS/MS analysis of full-length primer extension products by hPol η confirmed the incorporation of dC opposite S-[2-(N-deoxyadenosinyl)ethyl]GSH and also showed the production of a -1 frameshift. These results reveal the significance of N-dA GSH-DBE adducts in blocking replication, as well as producing mutations, by human translesion synthesis DNA polymerases.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Electrophilic Modification of PKM2 by 4-Hydroxynonenal and 4-Oxononenal Results in Protein Cross-Linking and Kinase Inhibition.
Camarillo JM, Ullery JC, Rose KL, Marnett LJ
(2017) Chem Res Toxicol 30: 635-641
MeSH Terms: Aldehydes, Cell Line, Tumor, Chromatography, Liquid, Click Chemistry, Enzyme Inhibitors, Humans, Ketones, Pyruvate Kinase, Tandem Mass Spectrometry
Show Abstract · Added April 22, 2018
Rapidly proliferating cells require an increased rate of metabolism to allow for the production of nucleic acids, amino acids, and lipids. Pyruvate kinase catalyzes the final step in the glycolysis pathway, and different isoforms display vastly different catalytic efficiencies. The M2 isoform of pyruvate kinase (PKM2) is strongly expressed in cancer cells and contributes to aerobic glycolysis in what is commonly termed the Warburg effect. Here, we show that PKM2 is covalently modified by the lipid electrophiles 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE modify multiple sites on PKM2 in vitro, including Cys424 and His439, which play a role in protein-protein interactions and fructose 1,6-bis-phosphate binding, respectively. Modification of these sites results in a dose-dependent decrease in enzymatic activity. In addition, high concentrations of the electrophile, most notably in the case of ONE, result in substantial protein-protein cross-linking in vitro and in cells. Exposure of RKO cells to electrophiles results in modification of monomeric PKM2 in a dose-dependent manner. There is a concomitant decrease in PKM2 activity in cells upon ONE exposure, but not HNE exposure. Together, our data suggest that modification of PKM2 by certain electrophiles results in kinase inactivation.
0 Communities
1 Members
0 Resources
MeSH Terms
Histone Adduction and Its Functional Impact on Epigenetics.
Galligan JJ, Marnett LJ
(2017) Chem Res Toxicol 30: 376-387
MeSH Terms: Animals, DNA, Epigenesis, Genetic, Gene Expression, Histones, Humans, Protein Binding, Protein Processing, Post-Translational
Show Abstract · Added April 22, 2018
Bioactive electrophiles generated from the oxidation of endogenous and exogenous compounds are a contributing factor in numerous disease states. Their toxicity is largely attributed to the covalent modification of cellular nucleophiles, including protein and DNA. With regard to protein modification, the side-chains of Cys, His, Lys, and Arg residues are critical targets. This results in the generation of undesired protein post-translational modifications (PTMs) that can trigger dire cellular consequences. Notably, histones are Lys- and Arg-rich proteins, providing a fertile source for adduction by both exogenous and endogenous electrophiles. The regulation of histone PTMs plays a critical role in the regulation of chromatin structure and thus gene expression. This perspective focuses on the role of electrophilic protein adduction within the context of chromatin and its potential consequences on cellular law and order.
0 Communities
1 Members
0 Resources
MeSH Terms
Six Germline Genetic Variations Impair the Translesion Synthesis Activity of Human DNA Polymerase κ.
Kim JK, Yeom M, Hong JK, Song I, Lee YS, Guengerich FP, Choi JY
(2016) Chem Res Toxicol 29: 1741-1754
MeSH Terms: DNA-Directed DNA Polymerase, Genetic Variation, Humans, Models, Molecular, Molecular Conformation
Show Abstract · Added March 14, 2018
DNA polymerase (pol) κ efficiently catalyzes error-free translesion DNA synthesis (TLS) opposite bulky N-guanyl lesions induced by carcinogens such as polycyclic aromatic hydrocarbons. We investigated the biochemical effects of nine human nonsynonymous germline POLK variations on the TLS properties of pol κ, utilizing recombinant pol κ (residues 1-526) enzymes and DNA templates containing an N-CH(9-anthracenyl)G (N-AnthG), 8-oxo-7,8-dihydroguanine (8-oxoG), O-methyl(Me)G, or an abasic site. In steady-state kinetic analyses, the R246X, R298H, T473A, and R512W variants displayed 7- to 18-fold decreases in k/Kfor dCTP insertion opposite G and N-AnthG, with 2- to 3-fold decreases in DNA binding affinity, compared to that of the wild-type, and further showed 5- to 190-fold decreases in k/Kfor next-base extension from C paired with N-AnthG. The A471V variant showed 2- to 4-fold decreases in k/Kfor correct nucleotide insertion opposite and beyond G (or N-AnthG) compared to that of the wild-type. These five hypoactive variants also showed similar patterns of attenuation of TLS activity opposite 8-oxoG, O-MeG, and abasic lesions. By contrast, the T44M variant exhibited 7- to 11-fold decreases in k/Kfor dCTP insertion opposite N-AnthG and O-MeG (as well as for dATP insertion opposite an abasic site) but not opposite both G and 8-oxoG, nor beyond N-AnthG, compared to that of the wild-type. These results suggest that the R246X, R298H, T473A, R512W, and A471V variants cause a general catalytic impairment of pol κ opposite G and all four lesions, whereas the T44M variant induces opposite lesion-dependent catalytic impairment, i.e., only opposite O-MeG, abasic, and bulky N-G lesions but not opposite G and 8-oxoG, in pol κ, which might indicate that these hypoactive pol κ variants are genetic factors in modifying individual susceptibility to genotoxic carcinogens in certain subsets of populations.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions.
Guengerich FP
(2017) Chem Res Toxicol 30: 2-12
MeSH Terms: Animals, Cytochrome P-450 Enzyme System, Drug Interactions, Humans, Pharmaceutical Preparations, Xenobiotics
Show Abstract · Added March 14, 2018
Today much is known about cytochrome P450 (P450) enzymes and their catalytic specificity, but the range of reactions catalyzed by each still continues to surprise. Historically, P450s had been considered to be involved in either the metabolism of xenobiotics or endogenous chemicals, in the former case playing a generally protective role and in the latter case a defined physiological role. However, the line of demarcation is sometimes blurred. It is difficult to be completely specific in drug design, and some P450s involved in the metabolism of steroids and vitamins can be off-targets. In a number of cases, drugs have been developed that act on some of those P450s as primary targets, e.g., steroid aromatase inhibitors. Several of the P450s involved in the metabolism of endogenous substrates are less specific than once thought and oxidize several related structures. Some of the P450s that primarily oxidize endogenous chemicals have been shown to oxidize xenobiotic chemicals, even in a bioactivation mode.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Assessment of Protein Binding of 5-Hydroxythalidomide Bioactivated in Humanized Mice with Human P450 3A-Chromosome or Hepatocytes by Two-Dimensional Electrophoresis/Accelerator Mass Spectrometry.
Yamazaki H, Suemizu H, Kazuki Y, Oofusa K, Kuribayashi S, Shimizu M, Ninomiya S, Horie T, Shibata N, Guengerich FP
(2016) Chem Res Toxicol 29: 1279-81
MeSH Terms: Animals, Cytochrome P-450 Enzyme System, Electrophoresis, Gel, Two-Dimensional, Hepatocytes, Humans, Mass Spectrometry, Mice, Protein Binding, Thalidomide
Show Abstract · Added March 14, 2018
Bioactivation of 5-hydroxy-[carbonyl-(14)C]thalidomide, a known metabolite of thalidomide, by human artificial or native cytochrome P450 3A enzymes, and nonspecific binding in livers of mice was assessed using two-dimensional electrophoresis combined with accelerator mass spectrometry. The apparent major target proteins were liver microsomal cytochrome c oxidase subunit 6B1 and ATP synthase subunit α in mice containing humanized P450 3A genes or transplanted humanized liver. Liver cytosolic retinal dehydrogenase 1 and glutathione transferase A1 were targets in humanized mice with P450 3A and hepatocytes, respectively. 5-Hydroxythalidomide is bioactivated by human P450 3A enzymes and trapped with proteins nonspecifically in humanized mice.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology.
Yamazaki H, Suemizu H, Mitsui M, Shimizu M, Guengerich FP
(2016) Chem Res Toxicol 29: 1903-1911
MeSH Terms: Activation, Metabolic, Animals, Chimera, Cytochrome P-450 Enzyme System, Humans, Liver, Mass Spectrometry, Mice, Thalidomide, Toxicokinetics
Show Abstract · Added March 14, 2018
Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activatedC-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.
Shimada T, Takenaka S, Kakimoto K, Murayama N, Lim YR, Kim D, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M
(2016) Chem Res Toxicol 29: 1029-40
MeSH Terms: Aryl Hydrocarbon Hydroxylases, Biphenyl Compounds, Cytochrome P-450 CYP2A6, Humans, Molecular Structure, Naphthalenes, Oxidation-Reduction, Phenanthrenes
Show Abstract · Added March 14, 2018
Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Toxicology Strategies for Drug Discovery - Present and Future: Introduction.
Humphreys WG, Will Y, Guengerich FP
(2016) Chem Res Toxicol 29: 437
MeSH Terms: Animals, Computer Simulation, Drug Discovery, Drug-Related Side Effects and Adverse Reactions, Humans, Models, Biological, Pharmaceutical Preparations, Toxicity Tests
Added March 14, 2018
0 Communities
1 Members
0 Resources
8 MeSH Terms