1. Zebrafish Developmental Models of Skeletal Diseases. Luderman LN, Unlu G, Knapik EW (2017) Curr Top Dev Biol : 81-124
    › Primary publication · 28335865 (PubMed)
  2. Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CV (2017) Elife
    › Primary publication · 28387645 (PubMed) · PMC5438250 (PubMed Central)
  3. Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease. Levic DS, Minkel JR, Wang WD, Rybski WM, Melville DB, Knapik EW (2015) J Mol Med (Berl) 93(2): 165-76
    › Primary publication · 25559265 (PubMed) · PMC4319984 (PubMed Central)
  4. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Zou P, Wu SY, Koteiche HA, Mishra S, Levic DS, Knapik E, Chen W, Mchaourab HS (2015) Exp Eye Res : 104-13
    › Primary publication · 26149094 (PubMed) · PMC4638411 (PubMed Central)
  5. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Unlu G, Levic DS, Melville DB, Knapik EW (2014) Int J Biochem Cell Biol : 57-67
    › Primary publication · 24333299 (PubMed) · PMC3915713 (PubMed Central)
  6. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development. Niu X, Hong J, Zheng X, Melville DB, Knapik EW, Meng A, Peng J (2014) J Biol Chem 289(17): 11971-11985
    › Primary publication · 24627485 (PubMed) · PMC4002104 (PubMed Central)
  7. The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development. Venkateswaran A, Sekhar KR, Levic DS, Melville DB, Clark TA, Rybski WM, Walsh AJ, Skala MC, Crooks PA, Knapik EW, Freeman ML (2014) Cancer Res 74(1): 38-43
    › Primary publication · 24247717 (PubMed) · PMC3947320 (PubMed Central)
  8. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC (2014) J Cell Sci 127(Pt 3): 485-95
    › Primary publication · 24481493 (PubMed) · PMC4007761 (PubMed Central)
  9. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Tanwar V, Bylund JB, Hu J, Yan J, Walthall JM, Mukherjee A, Heaton WH, Wang WD, Potet F, Rai M, Kupershmidt S, Knapik EW, Hatzopoulos AK (2014) Stem Cells 32(7): 1774-88
    › Primary publication · 24648383 (PubMed) · PMC4123739 (PubMed Central)
  10. Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Müller II, Melville DB, Tanwar V, Rybski WM, Mukherjee A, Shoemaker MB, Wang WD, Schoenhard JA, Roden DM, Darbar D, Knapik EW, Hatzopoulos AK (2013) Dis Model Mech 6(2): 332-41
    › Primary publication · 23223679 (PubMed) · PMC3597016 (PubMed Central)