1. Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G (2020) Dev Cell 53(4): 390-405.e10
    › Primary publication · 32359405 (PubMed) · PMC7278035 (PubMed Central)
  2. Microtubules Regulate Localization and Availability of Insulin Granules in Pancreatic Beta Cells. Bracey KM, Ho KH, Yampolsky D, Gu G, Kaverina I, Holmes WR (2020) Biophys J 118(1): 193-206
    › Primary publication · 31839261 (PubMed) · PMC6950633 (PubMed Central)
  3. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, Gu G, Kaverina I (2020) Diabetes 69(9): 1936-1947
    › Primary publication · 32540877 (PubMed) · PMC7458041 (PubMed Central)
  4. Coregulator Sin3a Promotes Postnatal Murine β-Cell Fitness by Regulating Genes in Ca Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response. Yang X, Graff SM, Heiser CN, Ho KH, Chen B, Simmons AJ, Southard-Smith AN, David G, Jacobson DA, Kaverina I, Wright CVE, Lau KS, Gu G (2020) Diabetes 69(6): 1219-1231
    › Primary publication · 32245798 (PubMed) · PMC7243292 (PubMed Central)
  5. Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells. Trogden KP, Zhu X, Lee JS, Wright CVE, Gu G, Kaverina I (2019) Curr Biol 29(14): 2339-2350.e5
    › Primary publication · 31303487 (PubMed) · PMC6698911 (PubMed Central)
  6. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G (2019) Dev Cell 48(1): 49-63.e7
    › Primary publication · 30620902 (PubMed) · PMC6327977 (PubMed Central)
  7. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca Sensitivity of Insulin Secretion Vesicles. Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G (2018) Dev Cell 45(3): 347-361.e5
    › Primary publication · 29656931 (PubMed) · PMC5962294 (PubMed Central)
  8. GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Kim DS, Song L, Wang J, Wu H, Gu G, Sugi Y, Li Z, Wang H (2018) Endocrinology 159(2): 1062-1073
    › Primary publication · 29272356 (PubMed) · PMC5793778 (PubMed Central)
  9. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Petrenko V, Saini C, Giovannoni L, Gobet C, Sage D, Unser M, Heddad Masson M, Gu G, Bosco D, Gachon F, Philippe J, Dibner C (2017) Genes Dev 31(4): 383-398
    › Primary publication · 28275001 (PubMed) · PMC5358758 (PubMed Central)
  10. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT, Powers AC, Gu G, Stein R (2016) Am J Physiol Endocrinol Metab 310(1): E91-E102
    › Primary publication · 26554594 (PubMed) · PMC4675799 (PubMed Central)