Jane Ferguson
Last active: 3/3/2020

Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes.

Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R
J Nutr Biochem. 2019 64: 45-49

PMID: 30428424 · PMCID: PMC6363876 · DOI:10.1016/j.jnutbio.2018.09.027

BACKGROUND - Omega-3 polyunsaturated fatty acids, specifically the fish-oil-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been proposed as inflammation-resolving agents via their effects on adipose tissue.

OBJECTIVE - We proposed to determine the effects of EPA and DHA on human adipocyte differentiation and inflammatory activation in vitro.

METHODS - Primary human subcutaneous adipocytes from lean and obese subjects were treated with 100 μM EPA and/or DHA throughout differentiation (differentiation studies) or for 72 h postdifferentiation (inflammatory studies). THP-1 monocytes were added to adipocyte wells for co-culture experiments. Subcutaneous and visceral adipose explants from obese subjects were treated for 72 h with EPA and DHA. Oil Red O staining was performed on live cells. Cells were collected for mRNA analysis by quantitative polymerase chain reaction, and media were collected for protein quantification by enzyme-linked immunosorbent assay.

RESULTS - Incubation with EPA and/or DHA attenuated inflammatory response to lipopolysaccharide (LPS) and monocyte co-culture with reduction in post-LPS mRNA expression and protein levels of IL6, CCL2 and CX3CL1. Expression of inflammatory genes was also reduced in the endogenous inflammatory response in obese adipose. Both DHA and EPA reduced lipid droplet formation and lipogenic gene expression without alteration in expression of adipogenic genes or adiponectin secretion.

CONCLUSIONS - EPA and DHA attenuate inflammatory activation of in vitro human adipocytes and reduce lipogenesis.

Copyright © 2018 Elsevier Inc. All rights reserved.

MeSH Terms (14)

Adipocytes Cell Differentiation Cells, Cultured Coculture Techniques Docosahexaenoic Acids Eicosapentaenoic Acid Fatty Acids, Omega-3 Humans Inflammation Leukocytes Lipid Droplets Lipopolysaccharides Macrophages Obesity

Connections (1)

This publication is referenced by other Labnodes entities: