Michael Waterman
Faculty Member
Last active: 2/12/2015

cAMP-dependent and tissue-specific expression of genes encoding steroidogenic enzymes in bovine luteal and granulosa cells in primary culture.

Lauber ME, Kagawa N, Waterman MR, Simpson ER
Mol Cell Endocrinol. 1993 93 (2): 227-33

PMID: 8394256 · DOI:10.1016/0303-7207(93)90128-7

Steroidogenic enzymes are differentially expressed throughout the ovarian cycle. The complex pattern of cell-specific up- and down-regulation accounts, at least in part, for the cyclic production of estrogens, androgens and progesterone. The gonadotropins follicle-stimulating hormone and luteinizing hormone are the main regulators of ovarian steroid hormone production and act primarily via the cAMP second-messenger system. Previous studies have identified cAMP-responsive sequences (CRS) in a number of genes encoding steroidogenic enzymes. In the present study we attempted to compare the cAMP responsiveness of some of these sequences with each other and with the classical cAMP-response element (CRE), as identified in the somatostatin gene. In addition, we were interested to determine whether or not the information for tissue-specific expression is contained by these sequences. Using transient transfection of reporter gene constructs, comprising the CRS of bCYP11A, bCYP17, hCYP21B and bovine adrenodoxin, we investigated cAMP-dependent and tissue-specific expression in primary cultures of bovine luteal and granulosa cells. Treatment of transfected luteal cells with forskolin markedly increased the expression of all but the CYP17-specific reporter gene constructs. A similar pattern of forskolin responsiveness was observed when these reporter gene constructs were transfected in bovine granulosa cells in primary culture. Furthermore, when a reporter gene construct containing the classical CRE genomic was transfected in bovine luteal cells, its expression was also highly stimulated upon treatment with forskolin. Thus, the classical cAMP/CRE system appears to be functional in these cells. Northern blot analysis of primary cultures of bovine luteal and granulosa cells revealed that bCYP17 and bCYP21B are not expressed in control and forskolin-treated cultures.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH Terms (23)

Adrenodoxin Aldehyde-Lyases Animals Aromatase Base Sequence Cattle Cells, Cultured Cholesterol Side-Chain Cleavage Enzyme Colforsin Corpus Luteum Cyclic AMP Cytochrome P-450 Enzyme System Enzyme Induction Female Gonadal Steroid Hormones Granulosa Cells Molecular Sequence Data Organ Specificity Recombinant Fusion Proteins Second Messenger Systems Steroid 17-alpha-Hydroxylase Steroids Transfection

Connections (1)

This publication is referenced by other Labnodes entities: