Michael Waterman
Faculty Member
Last active: 2/12/2015

Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms.

Nes CR, Singha UK, Liu J, Ganapathy K, Villalta F, Waterman MR, Lepesheva GI, Chaudhuri M, Nes WD
Biochem J. 2012 443 (1): 267-77

PMID: 22176028 · PMCID: PMC3491665 · DOI:10.1042/BJ20111849

Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate-mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control<[2-(13)C]leucine<[2-(13)C]acetate<[1-(13)C]glucose) and corresponding depletion of cholesta-5,7,24-trienol. We conclude that anabolic fluxes originating in mitochondrial metabolism constitute a flexible part of sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth.

MeSH Terms (8)

Escherichia coli Metabolome Methyltransferases Protozoan Proteins Recombinant Proteins Sterol 14-Demethylase Sterols Trypanosoma brucei brucei

Connections (1)

This publication is referenced by other Labnodes entities: