Ned Porter
Faculty Member
Last active: 5/29/2014

Mechanisms for the formation of isoprostane endoperoxides from arachidonic acid. "Dioxetane" intermediate versus beta-fragmentation of peroxyl radicals.

Yin H, Havrilla CM, Gao L, Morrow JD, Porter NA
J Biol Chem. 2003 278 (19): 16720-5

PMID: 12609993 · DOI:10.1074/jbc.M300604200

The isoprostanes are a class of autoxidation products generated from arachidonic acid (or its esters) by a free radical initiated process. The potent biological activity of these compounds has been attracting intense research interest since they were detected in humans as well as animal models in the early 1990s. The measurement of these compounds has been regarded as one of the most useful non-invasive biomarkers for oxidative stress status. Two mechanisms for the formation of these compounds have been proposed. In the first mechanism, a peroxyl radical undergoes successive 5-exo cyclizations analogous to the enzymatic mechanism proposed for prostaglandin biosynthesis. The second mechanism starts with a 4-exo cyclization of a peroxyl radical leading to an intermediate dioxetane, a mechanism that has also been proposed for prostaglandin biosynthesis as well as for the formation of 4-hydroxy nonenal (HNE). Autoxidation of cholesteryl-15-HpETE under free radical conditions provides Type IV isoprostanes. The "dioxetane" mechanism for isoprostane generation from 15-HpETE requires that optically pure products are formed from an optically pure reactant, whereas an alternate mechanism for the process involving beta-fragmentation of the 15-peroxyl would give racemic isoprostane products. We have carried out a test of the mechanism based upon these stereochemical requirements. The results of analysis of the product mixture derived from autoxidation of optically pure Ch-15-HpETE by atmospheric pressure chemical ionization-mass spectrometry coupled with chiral high performance liquid chromatography indicate that the major isoprostane diastereomers are formed as a racemic mixture. These experimental results are consistent with a mechanism for isoprostane formation involving beta-fragmentation of the 15-peroxyl radical followed by re-addition of oxygen to form the 11-HPETE peroxyl, and they exclude a mechanism proceeding through the formation of a dioxetane intermediate.

MeSH Terms (5)

Arachidonic Acid Arachidonic Acids Isoprostanes Oxygen Peroxides

Connections (1)

This publication is referenced by other Labnodes entities: