Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

Thompson JJ, Williams CS
Genes (Basel). 2018 9 (3)

PMID: 29495399 · PMCID: PMC5867842 · DOI:10.3390/genes9030121

Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

MeSH Terms (0)

Connections (1)

This publication is referenced by other Labnodes entities: