Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas.

Anderson DMG, Ablonczy Z, Koutalos Y, Hanneken AM, Spraggins JM, Calcutt MW, Crouch RK, Caprioli RM, Schey KL
Sci Rep. 2017 7 (1): 17352

PMID: 29229934 · PMCID: PMC5725462 · DOI:10.1038/s41598-017-17402-1

Stargardt disease is a juvenile onset retinal degeneration, associated with elevated levels of lipofuscin and its bis-retinoid components, such as N-retinylidene-N-retinylethanolamine (A2E). However, the pathogenesis of Stargardt is still poorly understood and targeted treatments are not available. Utilizing high spatial and high mass resolution matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS), we determined alterations of lipid profiles specifically localized to the retinal pigment epithelium (RPE) in Abca4 Stargardt model mice compared to their relevant background strain. Extensive analysis by LC-MS/MS in both positive and negative ion mode was required to accurately confirm the identity of one highly expressed lipid class, bis(monoacylgylercoro)phosphate (BMP) lipids, and to distinguish them from isobaric species. The same BMP lipids were also detected in the RPE of healthy human retina. BMP lipids have been previously associated with the endosomal/lysosomal storage diseases Niemann-Pick and neuronal ceroid lipofuscinosis and have been reported to regulate cholesterol levels in endosomes. These results suggest that perturbations in lipid metabolism associated with late endosomal/lysosomal dysfunction may play a role in the pathogenesis of Stargardt disease and is evidenced in human retinas.

MeSH Terms (14)

Animals ATP-Binding Cassette Transporters Disease Models, Animal Endosomes Humans Lipids Lysophospholipids Lysosomes Macular Degeneration Mice Mice, Knockout Monoglycerides Retina Retinal Pigment Epithelium

Connections (3)

This publication is referenced by other Labnodes entities:

Links