We have detected that you are using some form of ad-blocking or filtering.
Please consider white-listing Labnodes since 1) ad-blockers like uBlock break Labnodes functionality and 2) Labnodes does not serve ads.
We study numerically the interaction of four initial superfluid vortex rings in the absence of any dissipation or friction. We find evidence for a cascade of Kelvin waves generated by individual vortex reconnection events which transfers energy to higher and higher wave numbers k. After the vortex reconnections occur, the energy spectrum scales as k(-1) and the curvature spectrum becomes flat. These effects highlight the importance of Kelvin waves and reconnections in the transfer of energy within a turbulent vortex tangle.
This publication is referenced by other Labnodes entities:
© 2010-2021. All Rights Reserved to Vanderbilt University. Vanderbilt University is committed to principles of equal opportunity and affirmative action.
Version 2.23
Released July 13, 2020