Regulation of glucose kinetics during exercise by the glucagon-like peptide-1 receptor.

Burmeister MA, Bracy DP, James FD, Holt RM, Ayala J, King EM, Wasserman DH, Drucker DJ, Ayala JE
J Physiol. 2012 590 (20): 5245-55

PMID: 22890715 · PMCID: PMC3497575 · DOI:10.1113/jphysiol.2012.234914

In response to oral glucose, glucagon-like peptide-1 receptor (Glp1r) knockout (Glp1r−/−) mice become hyperglycaemic due to impaired insulin secretion. Exercise also induces hyperglycaemia in Glp1r−/− mice. In contrast to oral glucose, exercise decreases insulin secretion. This implies that exercise-induced hyperglycaemia in Glp1r−/− mice results from the loss of a non-insulinotropic effect mediated by the Glp1r. Muscle glucose uptake (MGU) is normal in exercising Glp1r−/− mice. Thus, we hypothesize that exercise-induced hyperglycaemia in Glp1r−/− mice is due to excessive hepatic glucose production (HGP). Wild-type (Glp1r+/+) and Glp1r−/− mice implanted with venous and arterial catheters underwent treadmill exercise or remained sedentary for 30 min. [3-3H]glucose was used to estimate rates of glucose appearance (Ra), an index of HGP, and disappearance (Rd). 2[14C]deoxyglucose was used to assess MGU. Glp1r−/− mice displayed exercise-induced hyperglycaemia due to an excessive increase in Ra but normal Rd and MGU. Exercise-induced glucagon levels were ∼2-fold higher in Glp1r−/− mice, resulting in a ∼2-fold higher glucagon:insulin ratio. Since inhibition of the central Glp1r stimulates HGP, we tested whether intracerebroventricular (ICV) infusion of the Glp1r antagonist exendin(9–39) (Ex9) in Glp1r+/+ mice would result in exercise-induced hyperglycaemia. ICV Ex9 did not enhance glucose levels or HGP during exercise, suggesting that glucoregulatory effects of Glp1 during exercise are mediated via the pancreatic Glp1r. In conclusion, functional disruption of the Glp1r results in exercise-induced hyperglycaemia associated with an excessive increase in glucagon secretion and HGP. These results suggest an essential role for basal Glp1r signalling in the suppression of alpha cell secretion during exercise.

MeSH Terms (14)

Animals Corticosterone Glucagon Glucagon-Like Peptide-1 Receptor Glucose Hyperglycemia Insulin Kinetics Liver Mice Mice, Inbred C57BL Mice, Knockout Physical Conditioning, Animal Receptors, Glucagon

Connections (3)

This publication is referenced by other Labnodes entities:

Links